RESUMO
The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.
Assuntos
Grafite , Neoplasias , Nanomedicina Teranóstica , Grafite/química , Grafite/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Fotoquimioterapia , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Sistemas de Liberação de Medicamentos , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Terapia Fototérmica/métodosRESUMO
The work aimed to investigate the biocompatibility and biological activity of the water-soluble fullerene adduct C60-Arg. It was found that the material is haemocompatible, is not cyto- and genotoxic, possesses pronounced antioxidant activity. Additionally, this paper outlines the direction of application of water-soluble fullerene adducts in the creation of neuroprotectors. It has been suggested that a putative mechanism of the protective action of the C60-Arg adduct is associated with its antioxidant properties, the ability to penetrate the blood-brain barrier, and release nitrogen monoxide as a result of the catabolism of L-arginine residues, which promote vascular relaxation. The action of the C60-Arg adduct was compared with the action of such an antioxidant as Edaravone, which is approved in Japan for the treatment of ischemic and haemorrhagic strokes.
Assuntos
Fulerenos , AVC Isquêmico , Nanoestruturas , Acidente Vascular Cerebral , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fulerenos/farmacologia , Fulerenos/uso terapêutico , Fulerenos/química , Água , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia , Arginina/uso terapêuticoRESUMO
The aim of this work is to synthesise and study the biocompatibility and biological activity of the C70 fullerene adduct with l-threonine (C70-Thr). The obtained adduct was identified using a complex of physicochemical methods, namely, 13C NMR spectroscopy, IR spectroscopy, thermogravimetric analysis, electron spectroscopy, elemental analysis, and high-performance liquid chromatography. The study of biocompatibility and biological activity of the C70-Thr adduct included the study of haemocompatibility (haemolysis, platelet aggregation, plasma coagulation haemostasis, binding to human serum albumin, esterase activity), antiradical activity, cytotoxicity, cell proliferation, and interaction with DNA (determination of the DNA binding constant and genotoxicity).
Assuntos
Fulerenos , Humanos , Fulerenos/farmacologia , Treonina , Espectroscopia de Ressonância Magnética , Cromatografia Líquida de Alta PressãoRESUMO
Functionalization of the fullerene core with amino acids has become a new and promising direction in the field of nanochemistry. The biologic activity of water-soluble fullerene derivatives is based on such properties as lipophilicity, electron deficiency and photosensitivity. The complex of above-mentioned properties can be used to develop protection of biomolecules (in particular, proteins) from external physical and chemical influences. Thus, development and up-scaling of synthesis procedures, as well as investigation of the biological properties of these derivatives, are extremely important. This paper presents new data on the biocompatibility studies of C60 fullerene adduct with L-methionine (C60[C5H11NO2S]3; C60-Met). Antiradical activity, binding to human serum albumin (HSA), collagen and deoxyribonucleic acid (DNA), hemocompatibility, photodynamic properties, genotoxicity and cytotoxicity were studied. In addition, it was found that C60-Met increases the photostability of the collagen molecule, and this effect is dose-dependent.
Assuntos
Fulerenos , Antioxidantes/farmacologia , Colágeno/farmacologia , Fulerenos/química , Fulerenos/farmacologia , Humanos , Metionina/farmacologia , ÁguaRESUMO
The review systematizes data on the wide possibilities of practical application of carbon nanostructures. Much attention is paid to the use of carbon nanomaterials in medicine for the visualization of tumors during surgical interventions, in the creation of cosmetics, as well as in agriculture in the creation of fertilizers. Additionally, we demonstrate trends in research in the field of carbon nanomaterials with a view to elaborating targeted drug delivery systems. We also show the creation of nanosized medicinal substances and diagnostic systems, and the production of new biomaterials. A separate section is devoted to the difficulties in studying carbon nanomaterials. The review is intended for a wide range of readers, as well as for experts in the field of nanotechnology and nanomedicine.
Assuntos
Carbono , Nanoestruturas , Carbono/química , Nanoestruturas/química , Humanos , Animais , Nanomedicina/métodos , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/químicaRESUMO
We report the synthesis of covalent conjugates of nanodiamonds with doxorubicin and a cytostatic drug from the class of 1,3,5-triazines. The obtained conjugates were identified using a number of physicochemical methods (IR-spectroscopy, NMR-spectroscopy, XRD, XPS, TEM). As a result of our study, it was found that ND-СONH-Dox and ND-COO-Diox showed good hemocompatibility, since they did not affect plasma coagulation hemostasis, platelet functional activity, and erythrocyte membrane. The ND-COO-Diox conjugates are also capable of binding to human serum albumin due to the presence of ND in their composition. In the study of the cytotoxic properties of ND-СONH-Dox and ND-COO-Diox in the T98G glioblastoma cell line, indicating that ND-СONH-Dox and ND-COO-Diox demonstrate greater cytotoxicity at lower concentrations of Dox and Diox in the composition of the conjugates compared to individual drugs; the cytotoxic effect of ND-COO-Diox was statistically significantly higher than that of ND-СONH-Dox at all concentrations studied. Greater cytotoxicity at lower concentrations of Dox and Diox in the composition of conjugates compared to individual cytostatics makes it promising to further study the specific antitumor activity and acute toxicity of these conjugates in models of glioblastoma in vivo. Our results demonstrated that ND-СONH-Dox and ND-COO-Diox enter HeLa cells predominantly via a nonspecific actin-dependent mechanism, while for ND-СONH-Dox a clathrin-dependent endocytosis pathway. All data obtained provide that the synthesized nanomaterials show a potential application as the agents for intertumoral administration.
Assuntos
Citostáticos , Glioblastoma , Nanodiamantes , Humanos , Nanodiamantes/química , Células HeLa , Doxorrubicina/químicaRESUMO
The article is dedicated to the comprehensive biocompatibility investigation of synthesised graphene oxide (GO) enriched with oxygen-containing functional groups (â85%). GO was synthesised through a modified Hummers and Offeman's method and characterised using 13C NMR, Raman, and IR spectroscopy, XRD, HRTEM, along with size dimensions and ζ-potentials in aqueous dispersions. Biocompatibility study included tests on haemocompatibility (haemolysis, platelet aggregation, binding to human serum albumin and its esterase activity), antioxidant activity (2,2-diphenyl-1-picrylhydrazyl reaction, NO-radical uptake, Radachlorin photobleaching, photo-induced haemolysis), genotoxicity using DNA comet assay, as well as metabolic activity and proliferation of HEK293 cells.