Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 20(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36286425

RESUMO

Microalgae and cyanobacteria are photosynthetic microorganisms' sources of renewable biomass that can be used for bioplastic production. These microorganisms have high growth rates, and contrary to other feedstocks, such as land crops, they do not require arable land. In addition, they can be used as feedstock for bioplastic production while not competing with food sources (e.g., corn, wheat, and soy protein). In this study, we review the macromolecules from microalgae and cyanobacteria that can serve for the production of bioplastics, including starch and glycogen, polyhydroxyalkanoates (PHAs), cellulose, polylactic acid (PLA), and triacylglycerols (TAGs). In addition, we focus on the cultivation of microalgae and cyanobacteria for wastewater treatment. This approach would allow reducing nutrient supply for biomass production while treating wastewater. Thus, the combination of wastewater treatment and the production of biomass that can serve as feedstock for bioplastic production is discussed. The comprehensive information provided in this communication would expand the scope of interdisciplinary and translational research.


Assuntos
Cianobactérias , Microalgas , Poli-Hidroxialcanoatos , Microalgas/metabolismo , Biomassa , Águas Residuárias , Proteínas de Soja/metabolismo , Cianobactérias/metabolismo , Celulose , Amido/metabolismo , Triglicerídeos/metabolismo , Glicogênio/metabolismo , Biocombustíveis
2.
Environ Pollut ; 306: 119422, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533958

RESUMO

Water management and treatment are high concern fields with several challenges due to increasing pollutants produced by human activity. It is imperative to find integral solutions and strategic measures with robust remediation. Landfill leachate production is a high concern emerging problem. Especially in low middle-income countries due to no proper local waste disposition regulation and non-engineered implemented methods to dispose of urban waste. These landfills can accumulate electronic waste and release heavy metals during the degradation process. Similar phenomena include expired pharmaceuticals like antibiotics. All these pollutants accumulated in leachate made it hard to dispose of or treat. Leachate produced in non-engineered landfills can permeate soils and reach groundwater, dragging different contaminants, including antibiotics and heavy metals, which eventually can affect the environment, changing soil properties and affecting wildlife. The presence of antibiotics in the environment is a problem with particular interest to solve, mainly to avoid the development of antibiotic-resistant microorganisms, which represent a future risk for human health with possible epidemic implications. It has been reported that the use of contaminated water with heavy metals to produce and grow vegetables is a risk for consumers, heavy metals effects in humans can include carcinogenic induction. This work explores the opportunities to use leachate as a source of nutrients to grow microalgae. Microalgae stand out as an alternative to bioremediate leachate, at the same time, microalgae produce high-value compounds that can be used in bioplastic, biofuels, and other industrial applications.


Assuntos
Metais Pesados , Microalgas , Eliminação de Resíduos , Poluentes Químicos da Água , Poluentes da Água , Antibacterianos/metabolismo , Biodegradação Ambiental , Humanos , Metais Pesados/análise , Microalgas/metabolismo , Solo , Instalações de Eliminação de Resíduos , Poluentes da Água/metabolismo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA