Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(5): 1029-1046, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38276915

RESUMO

Motor activation in response to perception of action-related stimuli may depend on a resonance mechanism subserving action understanding. The extent to which this mechanism is innate or learned from sensorimotor experience is still unclear. Here, we recorded EEG while people with paraplegia or tetraplegia consequent to spinal cord injury (SCI) and healthy control participants were presented with action sounds produced by body parts (mouth, hands or feet) that were or were not affected by SCI. Non-action sounds were used as further control. We observed reduced brain activation in subjects affected by SCI at both pre- and post-stimulus latencies specifically for those actions whose effector was disconnected by the spinal lesion (i.e., hand sound for tetraplegia and leg sound for both paraplegia and tetraplegia). Correlation analyses showed that these modulations were functionally linked with the chronicity of the lesion, indicating that the longer the time the lesion- EEG data acquisition interval and/or the more the lesion occurred at a young age, the weaker was the cortical activity in response to these action sounds. Tellingly, source estimations confirmed that these modulations originated from a deficit in the motor resonance mechanism, by showing diminished activity in premotor (during prediction and perception) and near the primary motor (during perception) areas. Such dissociation along the cortical hierarchy is consistent with both previous reports in healthy subjects and with hierarchical predictive coding accounts. Overall, these data expand on the notion that sensorimotor experience maintains the cortical representations relevant to anticipate and perceive action-related stimuli.


Assuntos
Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/patologia , Paraplegia , Som , Quadriplegia
2.
J Long Term Eff Med Implants ; 34(3): 23-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505890

RESUMO

Schatzker III tibial plateau fractures (TPF) reduction and stabilization still represents a challenging procedure. We present an alternative, percutaneous surgical technique. With an antero-medial transverse incision at the level of the tibial metaphysis, under fluoroscopic control, an osteotome is advanced from medial to lateral, under the depressed fragments, reducing the articular surface of the lateral TP anatomically, without creating a significant void and preserving the lateral wall. Final fixation is achieved with screws placed from lateral to medial in a percutaneous fashion, parallel to the articular surface to hold fragments in a rafting way. Open surgical techniques hide many pitfalls and several new reduction options have been described; some simple but invasive, using bone tamps and bone graft that increase surgical trauma; others reliable and safe, but demanding and difficult to reproduce, needing good arthroscopic skills or special and expensive instrumentation, therefore not always available in the operating theater. We prefer a medially based percutaneous metaphyseal bone access using two simple flat low profile instruments such as osteotomes, that preserve bone and vascularization during the reduction maneuvers, minimizing the above-mentioned risks, for the treatment of Schatzker type III TPF.


Assuntos
Fraturas da Tíbia , Fraturas do Planalto Tibial , Humanos , Fixação Interna de Fraturas , Fluoroscopia , Fraturas da Tíbia/cirurgia , Transplante Ósseo
3.
J Appl Stat ; 51(1): 114-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38179161

RESUMO

We propose a novel approach to the estimation of multiple Graphical Models to analyse temporal patterns of association among a set of metabolites over different groups of patients. Our motivating application is the Southall And Brent REvisited (SABRE) study, a tri-ethnic cohort study conducted in the UK. We are interested in identifying potential ethnic differences in metabolite levels and associations as well as their evolution over time, with the aim of gaining a better understanding of different risk of cardio-metabolic disorders across ethnicities. Within a Bayesian framework, we employ a nodewise regression approach to infer the structure of the graphs, borrowing information across time as well as across ethnicities. The response variables of interest are metabolite levels measured at two time points and for two ethnic groups, Europeans and South-Asians. We use nodewise regression to estimate the high-dimensional precision matrices of the metabolites, imposing sparsity on the regression coefficients through the dynamic horseshoe prior, thus favouring sparser graphs. We provide the code to fit the proposed model using the software Stan, which performs posterior inference using Hamiltonian Monte Carlo sampling, as well as a detailed description of a block Gibbs sampling scheme.

4.
Nanoscale ; 16(23): 11232-11249, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38779821

RESUMO

Catalytic activity is affected by surface morphology, and specific surfaces display greater activity than others. A key challenge is to define synthetic strategies to enhance the expression of more active surfaces and to maintain their stability during the lifespan of the catalyst. In this work, we outline an ab initio approach, based on density functional theory, to predict surface composition and particle morphology as a function of environmental conditions, and we apply this to CeO2 nanoparticles in the presence of co-adsorbed H2O and CO2 as an industrially relevant test case. We find that dissociative adsorption of both molecules is generally the most favourable, and that the presence of H2O can stabilise co-adsorbed CO2. We show that changes in adsorption strength with temperature and adsorbate partial pressure lead to significant changes in surface stability, and in particular that co-adsorption of H2O and CO2 stabilizes the {100} and {110} surfaces over the {111} surface. Based on the changes in surface free energy induced by the adsorbed species, we predict that cuboidal nanoparticles are favoured in the presence of co-adsorbed H2O and CO2, suggesting that cuboidal particles should experience a lower thermodynamic driving force to reconstruct and thus be more stable as catalysts for processes involving these species.

5.
Biomaterials ; 307: 122527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518591

RESUMO

Community-associated and hospital-acquired infections caused by bacteria continue to yield major global challenges to human health. Bacterial contamination on abiotic surfaces is largely spread via high-touch surfaces and contemporary standard disinfection practices show limited efficacy, resulting in unsatisfactory therapeutic outcomes. New strategies that offer non-specific and broad protection are urgently needed. Herein, we report our novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction. Our results reveal potent levels of surface catalytic activity on both wet and dry surfaces, with rapid, and complete eradication of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin resistant S. aureus, in both planktonic and biofilm form. Preferential electrostatic adherence of anionic bacteria to the cationic nanozyme surface leads to a catastrophic loss in both aerobic and anaerobic respiration, DNA damage, osmodysregulation, and finally, programmed bacterial lysis. Our data reveal several unique mechanistic avenues of synergistic ceria-Ag efficacy. Ag potentially increases the presence of Ce3+ sites at the ceria-Ag interface, thereby facilitating the formation of harmful H2O2, followed by likely permeation across the cell wall. Further, a weakened Ag-induced Ce-O bond may drive electron transfer from the Ec band to O2, thereby further facilitating the selective reduction of O2 toward H2O2 formation. Ag destabilizes the surface adsorption of molecular H2O2, potentially leading to higher concentrations of free H2O2 adjacent to bacteria. To this end, our results show that H2O2 and/or NO/NO2-/NO3- are the key liberators of antibacterial activity, with a limited immediate role being offered by nanozyme-induced ROS including O2•- and OH•, and likely other light-activated radicals. A mini-pilot proof-of-concept study performed in a pediatric dental clinic setting confirms residual, and continual nanozyme antibacterial efficacy over a 28-day period. These findings open a new approach to alleviate infections caused by bacteria for use on high-touch hard surfaces.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Peróxido de Hidrogênio , Prata/farmacologia , Prata/química , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA