Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 102(3): 1393-1448, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35188422

RESUMO

ER-phagy (reticulophagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., autophagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates in the control of ER size and activity during ER stress, the reestablishment of ER homeostasis after ER stress resolution, and the removal of ER parts in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases, and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.


Assuntos
Retículo Endoplasmático , Lisossomos , Autofagia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo
2.
Mol Cell ; 78(5): 811-813, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502421

RESUMO

Liang et al. (2020) reports on a genome-wide screen that reveals new aspects of starvation-induced degradation of the endoplasmic reticulum.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Mitocôndrias
3.
Traffic ; 25(1): e12927, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272446

RESUMO

Endoplasmic reticulum (ER) retention of misfolded glycoproteins is mediated by the ER-localized eukaryotic glycoprotein secretion checkpoint, UDP-glucose glycoprotein glucosyl-transferase (UGGT). The enzyme recognizes a misfolded glycoprotein and flags it for ER retention by re-glucosylating one of its N-linked glycans. In the background of a congenital mutation in a secreted glycoprotein gene, UGGT-mediated ER retention can cause rare disease, even if the mutant glycoprotein retains activity ("responsive mutant"). Using confocal laser scanning microscopy, we investigated here the subcellular localization of the human Trop-2-Q118E, E227K and L186P mutants, which cause gelatinous drop-like corneal dystrophy (GDLD). Compared with the wild-type Trop-2, which is correctly localized at the plasma membrane, these Trop-2 mutants are retained in the ER. We studied fluorescent chimeras of the Trop-2 Q118E, E227K and L186P mutants in mammalian cells harboring CRISPR/Cas9-mediated inhibition of the UGGT1 and/or UGGT2 genes. The membrane localization of the Trop-2 Q118E, E227K and L186P mutants was successfully rescued in UGGT1-/- cells. UGGT1 also efficiently reglucosylated Trop-2-Q118E-EYFP in cellula. The study supports the hypothesis that UGGT1 modulation would constitute a novel therapeutic strategy for the treatment of pathological conditions associated to misfolded membrane glycoproteins (whenever the mutation impairs but does not abrogate function), and it encourages the testing of modulators of ER glycoprotein folding quality control as broad-spectrum rescue-of-secretion drugs in rare diseases caused by responsive secreted glycoprotein mutants.


Assuntos
Dobramento de Proteína , Doenças Raras , Animais , Humanos , Doenças Raras/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Retículo Endoplasmático/metabolismo , Mutação , Mamíferos/metabolismo , Glucosiltransferases/metabolismo
4.
EMBO Rep ; 25(6): 2773-2785, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773321

RESUMO

The endoplasmic reticulum (ER) produces proteins destined to organelles of the endocytic and secretory pathways, the plasma membrane, and the extracellular space. While native proteins are transported to their intra- or extracellular site of activity, folding-defective polypeptides are retro-translocated across the ER membrane into the cytoplasm, poly-ubiquitylated and degraded by 26 S proteasomes in a process called ER-associated degradation (ERAD). Large misfolded polypeptides, such as polymers of alpha1 antitrypsin Z (ATZ) or mutant procollagens, fail to be dislocated across the ER membrane and instead enter ER-to-lysosome-associated degradation (ERLAD) pathways. Here, we show that pharmacological or genetic inhibition of ERAD components, such as the α1,2-mannosidase EDEM1 or the OS9 ERAD lectins triggers the delivery of the canonical ERAD clients Null Hong Kong (NHK) and BACE457Δ to degradative endolysosomes under control of the ER-phagy receptor FAM134B and the LC3 lipidation machinery. Our results reveal that ERAD dysfunction is compensated by the activation of FAM134B-driven ERLAD pathways that ensure efficient lysosomal clearance of orphan ERAD clients.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Lisossomos , Proteínas de Membrana , Lisossomos/metabolismo , Humanos , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Secretases da Proteína Precursora do Amiloide/metabolismo , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/genética , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dobramento de Proteína , Transporte Proteico , Lectinas/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Camundongos , Células HeLa
5.
EMBO J ; 40(15): e107240, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34152647

RESUMO

Efficient degradation of by-products of protein biogenesis maintains cellular fitness. Strikingly, the major biosynthetic compartment in eukaryotic cells, the endoplasmic reticulum (ER), lacks degradative machineries. Misfolded proteins in the ER are translocated to the cytosol for proteasomal degradation via ER-associated degradation (ERAD). Alternatively, they are segregated in ER subdomains that are shed from the biosynthetic compartment and are delivered to endolysosomes under control of ER-phagy receptors for ER-to-lysosome-associated degradation (ERLAD). Demannosylation of N-linked oligosaccharides targets terminally misfolded proteins for ERAD. How misfolded proteins are eventually marked for ERLAD is not known. Here, we show for ATZ and mutant Pro-collagen that cycles of de-/re-glucosylation of selected N-glycans and persistent association with Calnexin (CNX) are required and sufficient to mark ERAD-resistant misfolded proteins for FAM134B-driven lysosomal delivery. In summary, we show that mannose and glucose processing of N-glycans are triggering events that target misfolded proteins in the ER to proteasomal (ERAD) and lysosomal (ERLAD) clearance, respectively, regulating protein quality control in eukaryotic cells.


Assuntos
Degradação Associada com o Retículo Endoplasmático/fisiologia , Lisossomos/metabolismo , Polissacarídeos/metabolismo , Animais , Calnexina/genética , Calnexina/metabolismo , Fibroblastos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Oligossacarídeos/metabolismo , Pró-Colágeno/genética , Pró-Colágeno/metabolismo , Dobramento de Proteína , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(51): e2214957119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508673

RESUMO

Secretory proteins and lipids are biosynthesized in the endoplasmic reticulum (ER). The "protein quality control" system (PQC) monitors glycoprotein folding and supports the elimination of terminally misfolded polypeptides. A key component of the PQC system is Uridine diphosphate glucose:glycoprotein glucosyltransferase 1 (UGGT1). UGGT1 re-glucosylates unfolded glycoproteins, to enable the re-entry in the protein-folding cycle and impede the aggregation of misfolded glycoproteins. In contrast, a complementary "lipid quality control" (LQC) system that maintains lipid homeostasis remains elusive. Here, we demonstrate that cytotoxic phosphatidic acid derivatives with saturated fatty acyl chains are one of the physiological substrates of UGGT2, an isoform of UGGT1. UGGT2 produces lipid raft-resident phosphatidylglucoside regulating autophagy. Under the disruption of lipid metabolism and hypoxic conditions, UGGT2 inhibits PERK-ATF4-CHOP-mediated apoptosis in mouse embryonic fibroblasts. Moreover, the susceptibility of UGGT2 KO mice to high-fat diet-induced obesity is elevated. We propose that UGGT2 is an ER-localized LQC component that mitigates saturated lipid-associated ER stress via lipid glucosylation.


Assuntos
Fibroblastos , Glucosiltransferases , Animais , Camundongos , Fibroblastos/metabolismo , Glucosiltransferases/metabolismo , Estresse do Retículo Endoplasmático , Glicoproteínas/metabolismo , Lipídeos
7.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30559329

RESUMO

Autophagy is a cytosolic quality control process that recognizes substrates through receptor-mediated mechanisms. Procollagens, the most abundant gene products in Metazoa, are synthesized in the endoplasmic reticulum (ER), and a fraction that fails to attain the native structure is cleared by autophagy. However, how autophagy selectively recognizes misfolded procollagens in the ER lumen is still unknown. We performed siRNA interference, CRISPR-Cas9 or knockout-mediated gene deletion of candidate autophagy and ER proteins in collagen producing cells. We found that the ER-resident lectin chaperone Calnexin (CANX) and the ER-phagy receptor FAM134B are required for autophagy-mediated quality control of endogenous procollagens. Mechanistically, CANX acts as co-receptor that recognizes ER luminal misfolded procollagens and interacts with the ER-phagy receptor FAM134B. In turn, FAM134B binds the autophagosome membrane-associated protein LC3 and delivers a portion of ER containing both CANX and procollagen to the lysosome for degradation. Thus, a crosstalk between the ER quality control machinery and the autophagy pathway selectively disposes of proteasome-resistant misfolded clients from the ER.


Assuntos
Calnexina/metabolismo , Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Pró-Colágeno/metabolismo , Animais , Autofagia , Calnexina/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Oryzias , Dobramento de Proteína
8.
EMBO J ; 37(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076131

RESUMO

Maintenance of cellular proteostasis relies on efficient clearance of defective gene products. For misfolded secretory proteins, this involves dislocation from the endoplasmic reticulum (ER) into the cytosol followed by proteasomal degradation. However, polypeptide aggregation prevents cytosolic dislocation and instead activates ill-defined lysosomal catabolic pathways. Here, we describe an ER-to-lysosome-associated degradation pathway (ERLAD) for proteasome-resistant polymers of alpha1-antitrypsin Z (ATZ). ERLAD involves the ER-chaperone calnexin (CNX) and the engagement of the LC3 lipidation machinery by the ER-resident ER-phagy receptor FAM134B, echoing the initiation of starvation-induced, receptor-mediated ER-phagy. However, in striking contrast to ER-phagy, ATZ polymer delivery from the ER lumen to LAMP1/RAB7-positive endolysosomes for clearance does not require ER capture within autophagosomes. Rather, it relies on vesicular transport where single-membrane, ER-derived, ATZ-containing vesicles release their luminal content within endolysosomes upon membrane:membrane fusion events mediated by the ER-resident SNARE STX17 and the endolysosomal SNARE VAMP8. These results may help explain the lack of benefits of pharmacologic macroautophagy enhancement that has been reported for some luminal aggregopathies.


Assuntos
Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Lisossomos/genética , Proteólise , alfa 1-Antitripsina/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Calnexina/genética , Calnexina/metabolismo , Retículo Endoplasmático/genética , Endossomos/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , alfa 1-Antitripsina/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
9.
PLoS Genet ; 15(4): e1008069, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30995221

RESUMO

In the peripheral nervous system (PNS) myelinating Schwann cells synthesize large amounts of myelin protein zero (P0) glycoprotein, an abundant component of peripheral nerve myelin. In humans, mutations in P0 cause the demyelinating Charcot-Marie-Tooth 1B (CMT1B) neuropathy, one of the most diffused genetic disorders of the PNS. We previously showed that several mutations, such as the deletion of serine 63 (P0-S63del), result in misfolding and accumulation of P0 in the endoplasmic reticulum (ER), with activation of the unfolded protein response (UPR). In addition, we observed that S63del mouse nerves display the upregulation of many ER-associated degradation (ERAD) genes, suggesting a possible involvement of this pathway in the clearance of the mutant P0. In ERAD in fact, misfolded proteins are dislocated from the ER and targeted for proteasomal degradation. Taking advantage of inducible cells that express the ER retained P0, here we show that the P0-S63del glycoprotein is degraded via ERAD. Moreover, we provide strong evidence that the Schwann cell-specific ablation of the ERAD factor Derlin-2 in S63del nerves exacerbates both the myelin defects and the UPR in vivo, unveiling a protective role for ERAD in CMT1B neuropathy. We also found that lack of Derlin-2 affects adult myelin maintenance in normal nerves, without compromising their development, pinpointing ERAD as a previously unrecognized player in preserving Schwann cells homeostasis in adulthood. Finally, we provide evidence that treatment of S63del peripheral nerve cultures with N-Acetyl-D-Glucosamine (GlcNAc), known to enhance protein quality control pathways in C.elegans, ameliorates S63del nerve myelination ex vivo. Overall, our study suggests that potentiating adaptive ER quality control pathways might represent an appealing strategy to treat both conformational and age-related PNS disorders.


Assuntos
Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Degradação Associada com o Retículo Endoplasmático , Bainha de Mielina/metabolismo , Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Animais , Biomarcadores , Linhagem Celular , Doenças Desmielinizantes/patologia , Imunofluorescência , Perfilação da Expressão Gênica , Homeostase , Humanos , Camundongos , Nervos Periféricos/ultraestrutura , Nervo Isquiático/metabolismo
10.
Crit Rev Biochem Mol Biol ; 54(2): 153-163, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31084437

RESUMO

About 40% of the eukaryotic cell's proteins are inserted co- or post-translationally in the endoplasmic reticulum (ER), where they attain the native structure under the assistance of resident molecular chaperones and folding enzymes. Subsequently, these proteins are secreted from cells or are transported to their sites of function at the plasma membrane or in organelles of the secretory and endocytic compartments. Polypeptides that are not delivered within the ER (mis-localized proteins, MLPs) are rapidly destroyed by cytosolic proteasomes, with intervention of the membrane protease ZMPSTE24 if they remained trapped in the SEC61 translocation machinery. Proteins that enter the ER, but fail to attain the native structure are rapidly degraded to prevent toxic accumulation of aberrant gene products. The ER does not contain degradative devices and the majority of misfolded proteins generated in this biosynthetic compartment are dislocated across the membrane for degradation by cytosolic 26S proteasomes by mechanisms and pathways collectively defined as ER-associated degradation (ERAD). Proteins that do not engage ERAD factors, that enter aggregates or polymers, are too large, display chimico/physical features that prevent dislocation across the ER membrane (ERAD-resistant misfolded proteins) are delivered to endo-lysosome for clearance, by mechanisms and pathways collectively defined as ER-to-lysosomes-associated degradation (ERLAD). Emerging evidences lead us to propose ERLAD as an umbrella term that includes the autophagic and non-autophagic pathways activated and engaged by ERAD-resistant misfolded proteins generated in the ER for delivery to degradative endo-lysosomes.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Animais , Autofagia , Humanos , Peptídeos/análise , Peptídeos/metabolismo , Dobramento de Proteína , Proteínas/análise , Proteólise , Canais de Translocação SEC/metabolismo
11.
Prog Mol Subcell Biol ; 59: 99-114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34050863

RESUMO

The endoplasmic reticulum (ER) is a biosynthetic organelle in eukaryotic cells. Its capacity to produce proteins, lipids and oligosaccharides responds to physiologic and pathologic demand. The transcriptional and translational unfolded protein response (UPR) programs increase ER size and activity. In contrast, ER-phagy programs in all their flavors select ER subdomains for lysosomal clearance. These programs are activated by nutrient deprivation, accumulation of excess ER (recov-ER-phagy), production of misfolded proteins that cannot be degraded by ER-associated degradation and that are removed from cells by the so-called ER-to-lysosome-associated degradation (ERLAD). Selection of ER subdomains to be cleared from cells relies on ER-phagy receptors, a class of membrane-bound proteins displaying cytosolic domains that engage the cytosolic ubiquitin-like protein LC3. Mechanistically, ER clearance proceeds via macro-ER-phagy, micro-ER-phagy and LC3-regulated vesicular delivery.


Assuntos
Autofagia , Retículo Endoplasmático , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Lisossomos/genética , Lisossomos/metabolismo , Resposta a Proteínas não Dobradas/genética
12.
Mol Cell ; 52(6): 783-93, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24239290

RESUMO

Folding-defective proteins must be cleared efficiently from the endoplasmic reticulum (ER) to prevent perturbation of the folding environment and to maintain cellular proteostasis. Misfolded proteins engage dislocation machineries (dislocons) built around E3 ubiquitin ligases that promote their transport across the ER membrane, their polyubiquitylation, and their proteasomal degradation. Here, we report on the intrinsic instability of the HRD1 dislocon and the constitutive, rapid turnover of the scaffold protein HERP. We show that HRD1 dislocon integrity relies on the presence of HRD1 clients that interrupt, in a dose-dependent manner, the UBC6e/RNF5/p97/proteasome-controlled relay that controls HERP turnover. We propose that ER-associated degradation (ERAD) deploys autoadaptive regulatory pathways, collectively defined as ERAD tuning, to rapidly adapt degradation activity to misfolded protein load and to preempt the unfolded protein response (UPR) activation.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas , Proteínas Adaptadoras de Transporte Vesicular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo , Proteólise , Interferência de RNA , Transdução de Sinais , Fator 2 Associado a Receptor de TNF , Transcrição Gênica , Transfecção , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Mol Cell ; 46(6): 809-19, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22633958

RESUMO

Several regulators of endoplasmic reticulum (ER)-associated degradation (ERAD) have a shorter half-life compared to conventional ER chaperones. At steady state, they are selectively removed from the ER by poorly defined events collectively referred to as ERAD tuning. Here we identify the complex comprising the type-I transmembrane protein SEL1L and the cytosolic protein LC3-I as an ERAD tuning receptor regulating the COPII-independent, vesicle-mediated removal of the lumenal ERAD regulators EDEM1 and OS-9 from the ER. Expression of folding-defective polypeptides enhances the lumenal content of EDEM1 and OS-9 by inhibiting their SEL1L:LC3-I-mediated segregation. This raises ERAD activity in the absence of UPR-induction. The mouse hepatitis virus (MHV) subverts ERAD tuning for replication. Consistently, SEL1L or LC3 silencing impair the MHV life cycle. Collectively, our data provide new molecular information about the ERAD tuning mechanisms that regulate ERAD in mammalian cells at the post translational level and how these mechanisms are hijacked by a pathogen.


Assuntos
Retículo Endoplasmático/metabolismo , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Degradação Associada com o Retículo Endoplasmático , Células HeLa , Humanos , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/patogenicidade , Dobramento de Proteína , Processamento de Proteína Pós-Traducional
14.
J Biol Chem ; 293(15): 5600-5612, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29453283

RESUMO

The stress sensors ATF6, IRE1, and PERK monitor deviations from homeostatic conditions in the endoplasmic reticulum (ER), a protein biogenesis compartment of eukaryotic cells. Their activation elicits unfolded protein responses (UPR) to re-establish proteostasis. UPR have been extensively investigated in cells exposed to chemicals that activate ER stress sensors by perturbing calcium, N-glycans, or redox homeostasis. Cell responses to variations in luminal load with unfolded proteins are, in contrast, poorly characterized. Here, we compared gene and protein expression profiles in HEK293 cells challenged with ER stress-inducing drugs or expressing model polypeptides. Drug titration to limit up-regulation of the endogenous ER stress reporters heat shock protein family A (Hsp70) member 5 (BiP/HSPA5) and homocysteine-inducible ER protein with ubiquitin-like domain 1 (HERP/HERPUD1) to levels comparable with luminal accumulation of unfolded proteins substantially reduced the amplitude of both transcriptional and translational responses. However, these drug-induced changes remained pleiotropic and failed to recapitulate responses to ER load with unfolded proteins. These required unfolded protein association with BiP and induced a much smaller subset of genes participating in a chaperone complex that binds unfolded peptide chains. In conclusion, UPR resulting from ER load with unfolded proteins proceed via a well-defined and fine-tuned pathway, whereas even mild chemical stresses caused by compounds often used to stimulate UPR induce cellular responses largely unrelated to the UPR or ER-mediated protein secretion.


Assuntos
Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Resposta a Proteínas não Dobradas , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
15.
Biol Cell ; 110(9): 197-204, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29979817

RESUMO

Study of the unfolded protein responses (UPR) is mainly addressed by challenging eukaryotic cells with chemical compounds that impair calcium, redox or glycan homeostasis. These dramatically alter the endoplasmic reticulum (ER) environment and function, but also trigger pleiotropic effects that may result in multi-organellar failure and cell death. Recent works showed that UPR induced by the accumulation of unfolded polypeptides in the ER lumen drastically differs from chemically induced UPR. Unfolded proteins are tolerated by cells, which activate a finely tuned UPR without entering apoptotic programs. How cells adapt the UPR to the burden of misfolded proteins, what structural features of the accumulating proteins determine UPR intensity and how these mechanisms translate into disease are crucial questions to be address in the future.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Humanos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo
16.
Traffic ; 17(4): 341-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27004930

RESUMO

Production of a functional proteome is a major burden for our cells. Native proteins operate inside and outside the cells to eventually warrant life and adaptation to metabolic and environmental changes, there is no doubt that production and inappropriate handling of misfolded proteins may cause severe disease states. This review focuses on protein destruction, which is, paradoxically, a crucial event for cell and organism survival. It regulates the physiological turnover of proteins and the clearance of faulty biosynthetic products. It mainly relies on the intervention of two catabolic machineries, the ubiquitin proteasome system and the (auto)lysosomal system. Here, we have selected five questions dealing with how, why and when proteins produced in the mammalian endoplasmic reticulum are eventually selected for destruction.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Proteólise , Animais , Humanos
17.
Biochem Biophys Res Commun ; 503(2): 938-943, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29932915

RESUMO

The Endoplasmic Reticulum (ER) is site of production of secretory and membrane proteins in eukaryotic cells. The ER does not contain catabolic devices and misfolded proteins generated in its lumen must be dislocated across the ER membrane before clearance by cytosolic proteasomes (ER-Associated Degradation, ERAD). How misfolded proteins are dislocated across the ER membrane is a matter of controversy. For example, it remains to be established if polypeptide unfolding is always required. If unfolding is a pre-requisite for dislocation as emerging evidences seem to indicate, it is likely that the incorrect set of disulfide bonds established during unsuccessful folding-attempts that precede selection for ERAD must be reduced to eliminate tertiary and quaternary structures that could hamper dislocation. The lumen of the mammalian ER contains more than 20 members of the PDI family, a handful of which plays a role in ERAD. Here we add the atypical, membrane-bound reductase TMX1 to this list and we show that TMX1 preferentially acts on membrane-tethered folding-defective polypeptides essentially ignoring the same misfolded ectodomains, when not associated to the ER membrane. As such, TMX1 is the first example of a topology-specific client protein redox catalyst acting both in the folding and in the degradative pathways.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Dobramento de Proteína , Tiorredoxinas/metabolismo , Retículo Endoplasmático/química , Células HEK293 , Humanos , Modelos Moleculares , Oxirredução , Peptídeos/química , Domínios Proteicos
18.
Biochem Soc Trans ; 46(3): 699-706, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29802216

RESUMO

The endoplasmic reticulum (ER) is the site of protein, lipid, phospholipid, steroid and oligosaccharide synthesis and modification, calcium ion storage, and detoxification of endogenous and exogenous products. Its volume (and activity) must be maintained under normal growth conditions, must be expanded in a controlled manner on activation of ER stress programs and must be reduced to pre-stress size during the recovery phase that follows ER stress termination. ER-phagy is the constitutive or regulated fragmentation and delivery of ER fragments to lysosomal compartments for clearance. It gives essential contribution to the maintenance of cellular homeostasis, proteostasis, lipidostasis and oligosaccharidostasis (i.e. the capacity to produce the proteome, lipidome and oligosaccharidome in appropriate quality and quantity). ER turnover is activated on ER stress, nutrient deprivation, accumulation of misfolded polypeptides, pathogen attack and by activators of macroautophagy. The selectivity of these poorly characterized catabolic pathways is ensured by proteins displayed at the limiting membrane of the ER subdomain to be removed from cells. These proteins are defined as ER-phagy receptors and engage the cytosolic macroautophagy machinery via specific modules that associate with ubiquitin-like, cytosolic proteins of the Atg8/LC3/GABARAP family. In this review, we give an overview on selective ER turnover and on the yeast and mammalian ER-phagy receptors identified so far.


Assuntos
Autofagia , Retículo Endoplasmático/fisiologia , Animais , Estresse do Retículo Endoplasmático , Homeostase
19.
Semin Cell Dev Biol ; 41: 79-89, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25534658

RESUMO

Asparagine-linked glycans (N-glycans) are displayed on the majority of proteins synthesized in the endoplasmic reticulum (ER). Removal of the outermost glucose residue recruits the lectin chaperone malectin possibly involved in a first triage of defective polypeptides. Removal of a second glucose promotes engagement of folding and quality control machineries built around the ER lectin chaperones calnexin (CNX) and calreticulin (CRT) and including oxidoreductases and peptidyl-prolyl isomerases. Deprivation of the last glucose residue dictates the release of N-glycosylated polypeptides from the lectin chaperones. Correctly folded proteins are authorized to leave the ER. Non-native polypeptides are recognized by the ER quality control key player UDP-glucose glycoprotein glucosyltransferase 1 (UGT1), re-glucosylated and re-addressed to the CNX/CRT chaperone binding cycle to provide additional opportunity for the protein to fold in the ER. Failure to attain the native structure determines the selection of the misfolded polypeptides for proteasome-mediated degradation.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas/química , Polissacarídeos/metabolismo , Dobramento de Proteína , Animais , Calnexina/metabolismo , Calreticulina/metabolismo , Glicoproteínas/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares
20.
Trends Biochem Sci ; 37(10): 404-10, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22921611

RESUMO

Nascent polypeptides entering the endoplasmic reticulum (ER) are covalently modified with pre-assembled oligosaccharides. The terminal glucose and mannose residues are immediately removed after transfer of the oligosaccharide onto newly synthesized polypeptides. This processing determines whether the polypeptide will be retained in the ER, transported along the secretory pathway, or dislocated across the ER membrane for destruction. New avenues of research and some issues of controversy have recently been opened by the discovery that lectin-oligosaccharide interactions stabilize supramolecular complexes between regulators of ER-associated degradation (ERAD). In this Opinion article, we propose a unified model that depicts carbohydrates acting both as flags signaling the fitness of a maturing protein and as docking sites that regulate the assembly and stability of the ERAD machinery.


Assuntos
Células Eucarióticas/metabolismo , Homeostase , Polissacarídeos/metabolismo , Proteínas/metabolismo , Retículo Endoplasmático/metabolismo , Células Eucarióticas/citologia , Modelos Moleculares , Polissacarídeos/química , Proteínas/química , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA