Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Am Chem Soc ; 146(3): 1849-1859, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38226612

RESUMO

On-surface synthesis has proven to be a powerful approach for fabricating various low-dimensional covalent nanostructures with atomic precision that could be challenging for conventional solution chemistry. Dehydrogenative Caryl-Caryl coupling is one of the most popular on-surface reactions, of which the mechanisms, however, have not been well understood due to the lack of microscopic insights into the intermediates that are fleetingly existing under harsh reaction conditions. Here, we bypass the most energy-demanding initiation step to generate and capture some of the intermediates at room temperature (RT) via the cyclodehydrobromination of 1-bromo-8-phenylnaphthalene on a Cu(111) surface. Bond-level scanning probe imaging and manipulation in combination with DFT calculations allow for the identification of chemisorbed radicals, cyclized intermediates, and dehydrogenated products. These intermediates correspond to three main reaction steps, namely, debromination, cyclization (radical addition), and H elimination. H elimination is the rate-determining step as evidenced by the predominant cyclized intermediates. Furthermore, we reveal a long-overlooked pathway of dehydrogenation, namely, atomic hydrogen-catalyzed H shift and elimination, based on the observation of intermediates for H shift and superhydrogenation and the proof of a self-amplifying effect of the reaction. This pathway is further corroborated by comprehensive theoretical analysis on the reaction thermodynamics and kinetics.

2.
J Comput Chem ; 45(14): 1112-1129, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38258532

RESUMO

Benzo[d]-X-zolyl-pyridinyl (XO, S, NH) radicals represent a promising class of redox-active molecules for organic batteries. We present a multistep screening procedure to identify the most promising radical candidates. Experimental investigations and highly correlated wave function-based calculations are performed to determine benchmark redox potentials. Based on these, the accuracies of different methods (semi-empirical, density functional theory, wave function-based), solvent models, dispersion corrections, and basis sets are evaluated. The developed screening procedure consists of three steps: First, a conformer search is performed with CREST. The molecules are selected based on the redox potentials calculated using GFN2-xTB. Second, HOMO energies calculated with reparametrized B3LYP-D3(BJ) and the def2-SVP basis set are used as selection criteria. The final molecules are selected based on the redox potentials calculated from Gibbs energies using BP86-D3(BJ)/def2-TZVP. With this multistep screening approach, promising molecules can be suggested for synthesis, and structure-property relationships can be derived.

3.
Chemistry ; 30(6): e202302979, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37950854

RESUMO

Sustainability is one of the hot topics of today's research, in particular when it comes to energy-storage systems such as batteries. Redox-active molecules implemented in organic batteries represent a promising alternative to lithium-ion batteries, which partially rely on non-sustainable heavy metal salts. As an alternative, we propose benzothiazole, -oxazole and -imidazole derivatives as redox-active moieties for polymers in organic (radical) batteries. The target molecules were identified by a combination of theoretical and experimental approaches for the investigation of new organic active materials. Herein, we present the synthesis, electrochemical characterization and theoretical investigation of the proposed molecules, which can later be introduced into a polymer backbone and used in organic polymer batteries.

4.
Chemphyschem ; : e202400216, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072857

RESUMO

The parasitic formation of singlet oxygen in aprotic alkaline/air batteries presents a challenge for the technical development of these systems. Avoidance strategies and investigation of reaction paths such as disproportionation of LiO2 and NaO2 have been presented. Furthermore, the dissociation of these superoxide systems have been discussed be as an alternative reaction channel. Here, we present a fundamental study of the electronic nature and dissociation behaviour of the alkali superoxides. The molecular systems were calculated at the CASSCF/CASPT2-level of theory. We determined the minimum energy crossing points along the dissociation required to form 3O2 and 1O2. Building on these results, a surface-hopping AIMD-simulation was performed employing the SHARC program package to follow the electronic transitions along the minimum energy crossing pooints during the dissociation. The feasibility of populating the electronic state corresponding to the formation of singlet oxygen during dissociation was demonstrated. For LiO2, 6.85% of the trajectories were found to terminate under formation of 1O2, whereas for NaO2 only 1.68% of the trajectories ended up in 1O2 formation. This represents an inverse trend to that reported in the literature. This observation suggests that the dissociation is a viable, monomolecular reaction path to 1O2 that complements the disproportionation pathway.

5.
J Comput Chem ; 44(3): 179-189, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35397119

RESUMO

On-surface synthesis has become a thriving topic in surface science. The Ullmann coupling reaction is the most applied synthetic route today, but the nature of the organometallic intermediate is still under discussion. We investigate the bonding nature of prototypical intermediate species (phenyl, naphthyl, anthracenyl, phenanthryl, and triphenylenyl) on the Cu(111) surface with a combination of plane wave and atomic orbital basis set methods using density functional theory calculations with periodic boundary conditions. The surface bonding is shown to be of covalent nature with a polarized shared-electron bond supported by π-back donation effects using energy decomposition analysis for extended systems (pEDA). The bond angle of the intermediates is determined by balancing dispersion attraction and Pauli repulsion between adsorbate and surface. The latter can be significantly reduced by adatoms on the surface. We furthermore investigate how to choose computational parameters for pEDA of organic adsorbates on metal surfaces efficiently and show that bonding interpretation requires consistent choice of the density functional.

6.
J Comput Chem ; 44(7): 843-856, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36507710

RESUMO

A class of adamantane-like molecular materials attracts attention because they exhibit an extreme non-linear optical response and emit a broad white-light spectrum after illumination with a continuous-wave infrared laser source. According to recent studies, not only the nature of the cluster molecules, but also the macroscopic structure of the materials determines their non-linear optical properties. Here we present a systematic study of cluster dimers of the compounds AdR4 and [(RT)4 S6 ] (T = Si, Ge, Sn) with R = methyl, phenyl or 1-naphthyl to gain fundamental knowledge about the interactions in the materials. For all compounds, a similar type of dimer structures with a staggered arrangement of substituents was determined as the energetically most favorable configuration. The binding energy between the dimers, determined by including London dispersion interactions, increases with the size of the core and the substituents. The cluster interactions can be classified as substituent-substituent-dominated (small cores, large substituents) or core-core-dominated (large cores, small substituents). Among various possible dimer conformers, those with small core-core distances are energetically preferred. Trimer and tetramer clusters display similar trends regarding the minimal core-core distances and binding energies. The much lower energy barrier determined for the rotation of substituents as compared to the rotation of the cluster dimers past each other indicates that the rotation of substituents more easily leads to different conformers in the material. Thus, understanding the interaction of the cluster dimers allows an initial assessment of the interactions in the materials.

7.
Chem Rev ; 121(20): 12445-12464, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319075

RESUMO

Rechargeable metal/O2 batteries have long been considered a promising future battery technology in automobile and stationary applications. However, they suffer from poor cyclability and rapid degradation. A recent hypothesis is the formation of singlet oxygen (1O2) as the root cause of these issues. Validation, evaluation, and understanding of the formation of 1O2 are therefore essential for improving metal/O2 batteries. We review literature and use Marcus theory to discuss the possibility of singlet oxygen formation in metal/O2 batteries as a product from (electro)chemical reactions. We conclude that experimental evidence is yet not fully conclusive, and side reactions can play a major role in verifying the existence of singlet oxygen. Following an in-depth analysis based on Marcus theory, we conclude that 1O2 can only originate from a chemical step. A direct electrochemical generation, as proposed by others, can be excluded on the basis of theoretical arguments.


Assuntos
Oxigênio , Oxigênio Singlete , Fontes de Energia Elétrica , Metais
8.
Phys Chem Chem Phys ; 24(9): 5301-5316, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179531

RESUMO

Lithium-ion batteries (LIBs) are a key electrochemical energy storage technology for mobile applications. In this context lithium titanate (LTO) is an attractive anode material for fast-charging LIBs and solid-state batteries (SSBs). The Li ion transport within LTO has a major impact on the performance of the anode in LIBs or SSBs. The Li vacancy diffusion in lithium-poor Li4Ti5O12 can take place either via 8ainit ↔ 16c ↔ 8afinal or a 8ainit ↔ 16c ↔ 48f ↔ 16dfinal diffusion path. To gain a more detailed understanding of the Li vacancy transport in LTO, we performed first principles molecular dynamics (FPMD) simulations in the temperature range from 800 K to 1000 K. To track the Li vacancies through the FPMD simulations, we introduce a method to distinguish the positions of multiple (Li) vacancies at each time. This method is used to characterize the diffusion path and the number of different diffusion steps. As a result, the majority of Li vacancy diffusion steps occur along the 8ainit ↔ 16c ↔ 8afinal. Moreover, the results indicate that the 16d Wyckoff position is a trapping site for Li vacancies. The dominant 8ainit ↔ 16c ↔ 8afinal path appears to compete with its back diffusion, which can be identified by the lifetime t16c of the 16c site. Our studies show that for t16c < 100 fs the back diffusion dominates, whereas for 100 fs ≤ t16c < 200 fs the 8ainit ↔ 16c ↔ 8afinal path dominates. In addition, the temperature-independent pre-factor D0 of the diffusion coefficient, as well as the attempt frequency Γ0 and the activation energy EA in lithium-poor LTO have been determined to be D0 = 1.5 × 10-3 cm2 s-1, as well as Γ0 = 6.6 THz and EA = 0.33 eV.

9.
J Comput Chem ; 42(18): 1283-1295, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949700

RESUMO

Amorphous lithium phosphorus oxynitride (LIPON) has emerged as a promising solid electrolyte for all-solid-state thin-film lithium batteries. In this context, the use of theoretical modeling to characterize, understand, or screen material properties is becoming increasingly important to complement experimental analysis or elucidate features at atomistic level that are difficult to obtain through experimental studies. Density functional theory (DFT) is the method of choice for quantum mechanical material modeling at the atomistic scale. The current state of the art represents DFT values, such as the formation or migration energies relevant for bulk phase of materials, as absolute numbers. Estimating the accuracy or fluctuation range of the different density functionals is challenging. In order to investigate the thermodynamic and kinetic properties of LIPON by DFT, an approach to describe the fluctuation range caused by the choice of the exchange-correlation (XC) functional is developed. Three different model systems were chosen to characterize various structural features of amorphous LIPON, which are distinguished by the cross-linking of the POu N4-u -structural units. The uncertainty U is introduced as a parameter describing the fluctuation range of energy values. The uncertainty approach does not determine the accuracy of DFT results, but rather a fluctuation range in the DFT results without the need for a reference value from a higher level of theory or experiment. The uncertainty was determined for both the thermodynamic Li-vacancy formation energies and the kinetic Li-vacancy migration energies in LIPON. We assume that the uncertainty approach can be applied to different material systems with different density functionals.

10.
Inorg Chem ; 60(9): 6239-6248, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33856209

RESUMO

Dirhodium(II) complexes such as [Rh2(TFA)4] bound to a functionalized mesoporous SBA-15 carrier material have proven to be valuable candidates for heterogeneous catalysis in the field of pharmaceutical synthesis. However, the mechanistic steps of immobilization by linker molecules containing carboxyl or amine functionalities remain the subject of discussion. Here we present a theoretical study of possible mechanistic binding pathways for the [Rh2(TFA)4] complex through model representations of synthetically investigated linkers, namely n-butylamine and n-butyric acid. Experimentally proposed intermediates of the immobilization process are investigated and analyzed by density functional theory calculations to gain insights into structural properties and the influence of solvation. An evaluation of the thermodynamic data for all identified intermediates allowed distinguishing between two possible reaction pathways that are characterized by a first axial complexation of either n-butyric acid or n-butylamine. In agreement with results from NMR spectroscopy, singly or doubly n-butylamine-fixated complexes were found to present possible immobilization products. Initial binding through a carboxy-functionalized linker is proposed as the most favorable reaction pathway for the formation of the mixed linker pattern [Rh2(TFA)3]·(n-butylamine)·(n-butyrate). The linkers n-butyric acid and n-butyrate, respectively, are found to exhibit an unaltered binding affinity to the dirhodium complex despite their protonation states, indicating invariance to the acidic environment unlike an immobilization by n-butylamine. These results present a theoretical framework for the rationalization of observed product distributions while also providing inspiration and guidance for the preparation of functionalized heterogeneous SBA-15/dirhodium catalyst systems.

11.
Phys Chem Chem Phys ; 23(39): 22567-22588, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34591051

RESUMO

The potential of mobile applications for digital networking is constantly increasing. A key challenge is to ensure a reliable and long-term power supply. One possible solution is the use of all-solid-state thin-film lithium batteries which use amorphous lithium phosphorus oxynitride (LIPON) as solid electrolyte. It is well known that the electrochemical properties of this material are related to the amorphous state, which correlates with the nitrogen content. Due to the difficulty of calculating amorphous structures using first principles methods, three different LIPON structure models are considered in this study and the influence of the anion POuN4-u sublattice on the Li vacancy and Li interstitial formation as well as on the lithium ion transport is highlighted. While for all three model systems the migration energies of the energetically preferred Li vacancies increase with increasing complexity of the anion POuN4-u sublattice only slightly from 0.38 eV to 0.55 eV, the migration energies for the energetically preferred Li interstitials decrease with increasing complexity of the anion POuN4-u sublattice from 0.68 eV to 0.38 eV. Thus, it was found that the energetically preferred lithium ion (Li vacancy and Li interstitial ion) transport mechanism in LIPON can be explained on the basis of the present POuN4-u structural units. In the presence of isolated PON3x- tetrahedra or periodic PO2N2 chains, the lithium vacancy diffusion dominates, whereas in the presence of periodic POuN4-u planes, the lithium interstitial diffusion becomes dominant.

12.
Angew Chem Int Ed Engl ; 60(3): 1176-1186, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33006797

RESUMO

We report the extension of the class of organotetrel sulfide clusters with further examples of the still rare silicon-based species, synthesized from RSiCl3 with R=phenyl (Ph, I), naphthyl (Np, II), and styryl (Sty, III) with Na2 S. Besides known [(PhSi)4 S6 ] (IV), new compounds [(NpSi)4 S6 ] (1) and [(StySi)4 S6 ] (2) were obtained, the first two of which underwent reactions with [AuCl(PPh3 )] to form ternary complexes. DFT studies of cluster dimers helped us understand the differences between the habit of {Si4 S6 }- and {Sn4 S6 }-based compounds. Crystalline 1 showed a pronounced nonlinear optical response, while for intrinsically amorphous 2, the chemical damage threshold seems to inhibit a corresponding observation. Calculations within the independent particle approximation served to rationalize and compare electronic and optical excitations of [(RSi)4 S6 ] clusters (R=Ph, Np). The calculations reproduced the measured data and allowed for the interpretation of the main spectroscopic features.

13.
Chemistry ; 26(11): 2395-2404, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31647142

RESUMO

Recent experimental investigations demonstrated the generation of singlet oxygen during charging at high potentials in lithium/oxygen batteries. To contribute to the understanding of the underlying chemical reactions a key step in the mechanism of the charging process, namely, the dissociation of the intermediate lithium superoxide to oxygen and lithium, was investigated. Therefore, the corresponding dissociation paths of the molecular model system lithium superoxide (LiO2 ) were studied by CASSCF/CASPT2 calculations. The obtained results indicate the presence of different dissociation paths over crossing points of different electronic states, which lead either to the energetically preferred generation of triplet oxygen or the energetically higher lying formation of singlet oxygen. The dissociation to the corresponding superoxide anion is energetically less preferred. The understanding of the detailed reaction mechanism allows the design of strategies to avoid the formation of singlet oxygen and thus to potentially minimize the degradation of materials in alkali metal/oxygen batteries. The calculations demonstrate a qualitatively similar but energetically shifted behavior for the homologous alkali metals sodium and potassium and their superoxide species. Fundamental differences were found for the covalently bound hydroperoxyl radical.

14.
J Comput Chem ; 40(27): 2400-2412, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31254474

RESUMO

The lack of description of van der Waals interactions in layered materials such as graphite and binary graphite intercalation compounds remains a main drawback of conventional density functional theory. Two fundamentally different approaches to overcome this issue are the employment of semiempirical dispersion correction scheme such as Grimme dispersion correction or nonlocal density functionals. We carefully compare these two approaches for the description of the geometric structure and the thermodynamic stability of pure graphite and Li-GICs at different lithium concentrations and stages. Based on the computed formation energies, we also evaluate the lithium-graphite intercalation potential. We find that PBE-D3(BJ) accurately reproduces the lattice parameters and the interlayer binding energy of graphite, although it underestimates the thermodynamic stability of stage-II Li-GICs mainly due to overbinding of carbon atoms in pure graphite. The nonlocal van der Waals functionals optB88-vdW, optB86b-vdW, and revPBE-vdW show a good agreement with experiments concerning stability of Li-GICs of different stages, although they overestimate the van der Waals interactions in graphite. The experimentally determined decreasing step-function behavior of Li-graphite intercalation potential can be qualitatively reproduced only by employing the revPBE van der Waals functional, whereas the other density functionals fail in the description. © 2019 Wiley Periodicals, Inc.

15.
Phys Rev Lett ; 122(19): 196101, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144947

RESUMO

The chemical structure and orientation of molecules on surfaces can be visualized using low temperature atomic force microscopy with CO-functionalized tips. Conventionally, this is done in constant-height mode by measuring the frequency shift of the oscillating force sensor. However, this method is unsuitable for analyzing 3D objects. We are using the tunneling current to track the topography while simultaneously obtaining submolecular resolution from the frequency shift signal. Thereby, the conformation of 3D molecules and the adsorption sites on the atomic lattice can be reliably determined.

16.
Langmuir ; 35(26): 8667-8680, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31173693

RESUMO

The adsorption thermodynamics of 4-(dimethylamino)pyridine (DMAP) and its five divalent derivatives di-DMAP- n (2 ≤ n ≤ 6) with gradually increasing methylene-spacer lengths n binding to planar gold surfaces has been studied by surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT). SERS intensities of the totally symmetrical breathing mode of the pyridine ring at approximately 1007 cm-1 are used to monitor the surface coverage of the DMAP and di-DMAP- n ligands on gold surfaces at different concentrations. The equilibrium constant as a measure of the binding affinity is obtained from these measurements by using a modified Langmuir isotherm. Due to multivalent binding to the gold substrate, a characteristic enhancement of the binding affinity of di-DMAP- n compared to the monovalent DMAP is observed for all divalent species. First principles calculations of the di-DMAP- n ligands on an ideal Au(111) surface model as well as step terrace models have been performed to understand the adsorption structures and the multivalent binding enhancements. Furthermore, Raman spectra of the adsorbed molecules have been studied by first principles calculations to correlate the binding affinities to experimentally determined adsorption constants. The joint experimental and theoretical investigation of an oscillatory behavior of the binding affinity as a function of the methylene-spacer length in mono- and divalent 4-(dimethylamino)pyridines reveals that the molecular architecture plays an important role for the structure-function interplay of multivalently bound adsorbates.

17.
Phys Chem Chem Phys ; 21(35): 19378-19390, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31455956

RESUMO

The thermodynamically unstable binary graphite intercalation compounds (GICs) with Na remain a main drawback preventing the implementation of Na-ion batteries in the market. In order to shed some light on the origin of Na-GICs instability, we investigate the structure and the energetics of different alkali metal (AM)-GICs by means of density functional theory (DFT) calculations with dispersion correction. We carefully consider different stages of AM-GICs for various AM concentrations and compare the results for Li, Na and K intercalation into graphite. In order to understand the compound stability, we investigated the interplay between the binding energy and the structural deformation due to the presence of AMs in graphite. Whereas the structural deformation energy linearly increases with the size of alkali metal ions, the binding energy passes through a maximum for Na-GIC. The analysis of different contributions to the binding energy allows to conclude that the alkali metal trend is broken for Li-GICs, not for Na-GICs. The high capacity for Li-GIC is a result of the small ion size of lithium. In addition to the mainly ionic binding nature, it allows to form a covalent contribution between lithium and graphite by orbital overlapping. In contrast, Na-GIC and K-GIC exhibit very small or hardly any covalent contribution. Furthermore, due to the small size of lithium the structural deformation energy cost also is small and allows van der Waals interactions between the graphite layers, which further enhance the stability of Li-GICs. For Na- and K-GICs, a higher energy amount for a structural deformation is needed and the stabilizing van der Waals interaction of graphite layers is weaker or hardly present.

18.
Angew Chem Int Ed Engl ; 57(19): 5355-5358, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29520940

RESUMO

The iron(IV) oxido complex [(tmc)Fe=O(OTf)]OTf with the macrocyclic ligand 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclo-tetradecane (tmc) has been synthesized using ozone as an oxidant. By adding water to this compound the complex [(H2 O)(tmc)Fe=O)](OTf)2 could be prepared. This complex is important in regard to a better understanding of the reactivity of FeIV oxido complexes. Mössbauer measurements using the solid compound showed an isomer shift of δ=0.19 mm s-1 and a quadrupole splitting ΔEQ =1.38 mm s-1 , confirming the high-valent FeIV state. DFT calculations were performed and led to an assignment of triplet spin multiplicity. Crystallographic characterization of [(H2 O)(tmc)Fe=O)](OTf)2 as well as of starting materials [(tmc)Fe(CH3 CN)](OTf)2 and [(tmc)Fe(OTf)]OTf together with previous results strongly suggest that [(H2 O)(tmc)Fe=O)](OTf)2 was formed similar to the oxido-hydroxido tautomerism analogous to heme systems.

19.
Chemphyschem ; 17(21): 3354-3358, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27550471

RESUMO

Ab initio molecular dynamic simulations reveal significantly reduced ion charges in several choline-based deep eutectic solvents, which are cheap and eco-friendly alternatives to ionic liquids. Increasing hydrogen bond strength between the anion and the organic compound enhances charge spreading from the anion to the organic compound while the positive charge is stronger located at the cation. Nonetheless, the negative charge transferred from chloride to urea in choline chloride urea mixtures is negligible. Thus, it seems questionable if charge delocalization occurring through hydrogen bonding between the halide anion and the organic compound is responsible for the deep eutectic melting point.

20.
Phys Chem Chem Phys ; 18(43): 29686-29697, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27711516

RESUMO

A systematic evaluation of small phosphine ligand-protected gold clusters with six to nine gold atoms using density functional theory with dispersion correction has been performed in order to understand the major factors determining stability, including its size, shape, and charge dependence. We show that the charge per atom of the cluster is much more important for the interaction between the ligand shell and gold cluster than the system size. Thus, strong charge transfer effects determine the binding strength between the ligand shell and cluster. The clusters in this series are all non-spherical and exhibit large HOMO-LUMO gaps (above 2.7 eV). Analysis of the delocalized nature of the electronic states at the centre of the clusters demonstrates the presence of nascent superatomic states. However the number of delocalized electrons in these systems is significantly influenced by the charge transfer from the phosphine ligands, contrary to the usual accounting rule for superatom complex systems. Thus, not only electron withdrawing but also charge transfer effects should be considered to influence the superatomic structure of charged ligand surrounded clusters. In consequence in the phosphine gold cluster series under consideration the systems Au7(PPh3)7+ and Au8(PPh3)82+ exhibit nearly fully filled S and P states and the HOMO-LUMO gap increases by 0.2 eV and 0.9 eV, respectively. The interpretation for the stability of the gold phosphine systems is in agreement with experimental results and demonstrates the importance of the superatomic concept.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA