Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Chem ; 67(12): 10025-10034, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38848103

RESUMO

Low-affinity protein-ligand interactions are important for many biological processes, including cell communication, signal transduction, and immune responses. Structural characterization of these complexes is also critical for the development of new drugs through fragment-based drug discovery (FBDD), but it is challenging due to the low affinity of fragments for the binding site. Saturation transfer difference (STD) NMR spectroscopy has revolutionized the study of low-affinity receptor-ligand interactions enabling binding detection and structural characterization. Comparison of relaxation and exchange matrix calculations with 1H STD NMR experimental data is essential for the validation of 3D structures of protein-ligand complexes. In this work, we present a new approach based on the calculation of a reduced relaxation matrix, in combination with funnel metadynamics MD simulations, that allows a very fast generation of experimentally STD-NMR-validated 3D structures of low-affinity protein-ligand complexes.


Assuntos
Proteínas , Ligantes , Proteínas/química , Proteínas/metabolismo , Simulação de Dinâmica Molecular , Modelos Moleculares , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Humanos , Ligação Proteica , Sítios de Ligação , Descoberta de Drogas
2.
Commun Chem ; 7(1): 137, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890439

RESUMO

Microbial α-L-fucosidases catalyse the hydrolysis of terminal α-L-fucosidic linkages and can perform transglycosylation reactions. Based on sequence identity, α-L-fucosidases are classified in glycoside hydrolases (GHs) families of the carbohydrate-active enzyme database. Here we explored the sequence-function space of GH29 fucosidases. Based on sequence similarity network (SSN) analyses, 15 GH29 α-L-fucosidases were selected for functional characterisation. HPAEC-PAD and LC-FD-MS/MS analyses revealed substrate and linkage specificities for α1,2, α1,3, α1,4 and α1,6 linked fucosylated oligosaccharides and glycoconjugates, consistent with their SSN clustering. The structural basis for the substrate specificity of GH29 fucosidase from Bifidobacterium asteroides towards α1,6 linkages and FA2G2 N-glycan was determined by X-ray crystallography and STD NMR. The capacity of GH29 fucosidases to carry out transfucosylation reactions with GlcNAc and 3FN as acceptors was evaluated by TLC combined with ESI-MS and NMR. These experimental data supported the use of SSN to further explore the GH29 sequence-function space through machine-learning models. Our lightweight protein language models could accurately allocate test sequences in their respective SSN clusters and assign 34,258 non-redundant GH29 sequences into SSN clusters. It is expected that the combination of these computational approaches will be used in the future for the identification of novel GHs with desired specificities.

3.
Nat Microbiol ; 9(8): 1979-1992, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862603

RESUMO

Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.


Assuntos
Filogenia , Compostos de Sulfônio , Compostos de Sulfônio/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Cianobactérias/enzimologia , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Vias Biossintéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA