Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant J ; 113(1): 106-126, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423224

RESUMO

Root growth dynamics is an outcome of complex hormonal crosstalk. The primary root meristem size, for example, is determined by antagonizing actions of cytokinin and auxin. Here we show that RAV1, a member of the AP2/ERF family of transcription factors, mediates cytokinin signaling in roots to regulate meristem size. The rav1 mutants have prominently longer primary roots, with a meristem that is significantly enlarged and contains higher cell numbers, compared with wild-type. The mutant phenotype could be restored on exogenous cytokinin application or by inhibiting auxin transport. At the transcript level, primary cytokinin-responsive genes like ARR1, ARR12 were significantly downregulated in the mutant root, indicating impaired cytokinin signaling. In concurrence, cytokinin induced regulation of SHY2, an Aux/IAA gene, and auxin efflux carrier PIN1 was hindered in rav1, leading to altered auxin transport and distribution. This effectively altered root meristem size in the mutant. Notably, CRF1, another member of the AP2/ERF family implicated in cytokinin signaling, is transcriptionally repressed by RAV1 to promote cytokinin response in roots. Further associating RAV1 with cytokinin signaling, our results demonstrate that cytokinin upregulates RAV1 expression through ARR1, during post-embryonic root development. Regulation of RAV1 expression is a part of secondary cytokinin response that eventually represses CRF1 to augment cytokinin signaling. To conclude, RAV1 functions in a branch pathway downstream to ARR1 that regulates CRF1 expression to enhance cytokinin action during primary root development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Citocininas/metabolismo , Meristema , Ácidos Indolacéticos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/metabolismo
2.
Langmuir ; 40(35): 18750-18759, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39162365

RESUMO

Blue energy generation in nanochannels based on salinity gradients is currently the most promising method in the area of nonconventional energy production. We used a semidiluted pure sodium carboxymethylcellulose (NaCMC)-KCl aqueous solution to study the characteristics of blue energy generation within a charged nanochannel. We solve the corresponding equations for ionic transport using a numerical technique based on the finite element method. Our analysis focused on the electric double layer (EDL) potential field, open circuit current, diffuse potential, electric conductance, maximum generated pore power, and maximum energy conversion efficiency by varying concentrations of the salt in the left-side reservoir and the bulk polyelectrolyte. The results indicate that as the polyelectrolyte concentration increases, the extent of EDL overlap considerably reduces. With an increase in polyelectrolyte concentration, the open circuit current increases, while the diffuse potential reduces. It was observed that both electrical conductance and maximal pore power improve considerably with higher polyelectrolyte concentrations. Interestingly, our modeling framework demonstrates a power density substantially higher (up to 16.31 W/m2) than earlier configurations and surpasses the established commercial limit (5 W/m2). Furthermore, our findings reveal that the reservoir salt concentration significantly affects the rate of decline in the maximum energy conversion efficiency as the polyelectrolyte concentration increases. The research paves the way for the development of high-power-density devices with several practical applications.

3.
Phys Chem Chem Phys ; 26(30): 20550-20561, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39036903

RESUMO

This study describes a numerical analysis on blue energy generation using a charged nanochannel with an integrated pH-sensitive polyelectrolyte layer (PEL), considering ion partitioning effects due to permittivity differences. The mathematical model for ionic and fluidic transport is solved using the finite element method, and the model validation is performed against existing theoretical and experimental results. The study investigates the influence of electrolyte concentration, permittivity ratio, and salt types (KCl, BeCl2, AlCl3) on the energy conversion process. The findings illustrate the substantial role of ion partitioning in modulating ionic concentration and potential fields, thereby affecting current profiles and energy conversion efficiencies. Remarkably, overlooking ion partitioning leads to significant overestimations of power density, highlighting the necessity of this consideration for accurate device performance predictions. This work introduces a promising configuration that achieves higher power densities, paving the way for the next generation of efficient energy-harvesting devices. The findings offer valuable insights into the development of state-of-the-art blue energy harvesting nanofluidic devices, advancing sustainable energy production.

4.
Electrophoresis ; 44(1-2): 44-52, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775948

RESUMO

We have investigated the role of viscoelectric effect on diffusioosmotic flow (DOF) through a nanochannel connected with two reservoirs. The transport equations governing the flow dynamics are solved numerically using the finite element technique. We have extensively analyzed the variation of induced field due to electric double layer (EDL) phenomenon, relative viscosity as modulated by the viscoelectric effect as well as reservoir's concentration difference, and their eventual impact on the underlying flow characteristics. It is revealed that the induced electric field in the EDL enhances fluid viscosity substantially near the charged wall at a higher concentration. We have shown that neglecting viscoelectric effect in the paradigm of diffusioosmotic transport overestimates the net throughput, particularly at a higher concentration difference. Furthermore, we show that pertaining to chemiosmosis dominated regime, the average flow velocity modifies with the increase in concentration difference up to a critical value. In comparison, the rise in the strength of resistive electroosmotic actuation by the accumulation of anions in the upstream reservoir reduces the average flow velocity at a higher concentration difference. We have reported a reduction in critical concentration with the increase in viscoelectric effect. The inferences of this analysis are deemed pertinent to reveal the bearing of viscoelectric effect as a flow control mechanism pertaining to DOF at nanoscale.


Assuntos
Eletricidade , Eletro-Osmose , Eletro-Osmose/métodos
5.
Electrophoresis ; 44(21-22): 1629-1636, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36807917

RESUMO

Pertaining to the mixing of the non-Newtonian Carreau fluid under electrokinetic actuation inside a plane microchannel, we propose a new design of micromixer that involves inserting a two-part cylinder bearing zeta potential of the same sign but different magnitude in the upstream and downstream directions. We numerically solve the transport equations to predict the underlying mixing characteristics. We demonstrate that a substantial momentum difference between the microchannel's plane wall and cylinder leads to the development of a vortex in the flow pathway, which in turn, enhances mixing substantially. As shown, for a fluid having a highly shear-thinning nature, the vortex-assisted convection mixing strength increases with diffusivity of the candidate fluids. Moreover, it is shown that for the higher shear-thinning nature of the candidate fluid, an increase in cylinder radius enhances mixing efficiency and flow rate simultaneously, resulting in a "quick and efficient" mixing condition. Additionally, the fluid rheology significantly alters the kinetics of shear-induced binary aggregation. Our findings show that the shear-induced aggregation characteristic time sharply increases with increasing shear-thinning behavior of the fluid.


Assuntos
Eletro-Osmose , Reologia/métodos , Cinética , Movimento (Física)
6.
Electrophoresis ; 44(21-22): 1637-1644, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37162479

RESUMO

We propose a novel technique, consistent with the induced charge electrokinetic (ICEK) phenomenon, for the efficient mixing of solute species at a microfluidic scale. A nonuniform bipolar electric double layer develops in the presence of an external electric field over a polarizable object is better known as the ICEK phenomenon. This ICEK is one of the most favorable techniques preferred for enhanced solute mixing in on-chip microfluidic platforms. In the purview of the ICEK phenomenon, instead of using perfectly conducting polarizable objects, for the first time in this study, we employ polarizable dielectric objects of different sizes and shapes for efficient mixing of solute species. We show that different types of vortices developed in the flow pathway adjacent to the polarizable dielectric blocks help in yielding efficient mixing in the proposed configuration. The novelty of our work is embellished in two different perspectives, that is, first, concentrating on the influences of the physical properties of the polarizable dielectric block on the underlying mixing, and, second, focusing on their sizes, shapes, and the arrangements in tuning the underlying mixing phenomena.


Assuntos
Eletricidade , Microfluídica , Soluções , Microfluídica/métodos
7.
Langmuir ; 39(47): 16797-16806, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37882459

RESUMO

For liquids used in biological applications, a smaller diffusion coefficient results in a longer mixing time. We discuss, in this endeavor, the promising potential of the AC electrothermal (ACET) effect toward modulating enhanced mixing of electrolytic liquids with higher convective strength in a novel wavy micromixer. To this end, we develop a modeling framework and numerically solve the pertinent transport equations in a three-dimensional (3D) configuration numerically. By benchmarking the developed modeling framework with the experimental results available in this paradigm, we aptly demonstrate the maximum temperature rise, flow topology, species concentration field, and mixing efficiency in the proposed configuration for a set of parameters pertinent to this analysis. We find that the maximum temperature increase in the wavy micromixer, owing to the electrothermal effect, is less than 10 K even for the higher strength of the applied voltage, implying nondegradation of biological substances within the liquid sample. We report that the formation of significant lateral flow closer to the electrodes leads to a highly three-dimensional ACET flow field, which has a significant impact on the mixing efficiency for the range of diffusive Peclet numbers considered. We also report that the wave amplitude of the mixer, when intervening with the diffusive Peclet number, strongly impacts the mixing efficiency. As witnessed in this endeavor, for the smaller diffusive Peclet number, the mixing efficiency increases with amplitude, while the effect becomes the opposite for the higher Peclet number. The results of this study seem to provide an adequate basis for the design of a novel micromixer intended for enhanced solute mixing in realistic microfluidic applications.

8.
Langmuir ; 39(35): 12302-12312, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37471700

RESUMO

By varying the pH values (pHR) and types of salt solution, we investigate the salinity gradient-induced electrical and mechanical flow energies inside a reservoir-connected charged nanochannel with a grafted pH-sensitive polyelectrolyte layer (PEL) on the inner surfaces. The aqueous solutions of KCl, LiCl, BaCl2, BeCl2, AlCl3, and Co(en)3Cl3 salts are used as the working fluid in the current investigation. We examine the associated ionic transport and flow field, aiming to understand the underlying physics behind the generation of electrical and hydraulic energy through alterations in pHR and types of salt solution. Our results reveal that the PEL space charge density decreases with increasing pHR at lower values, while it remains almost insensitive to higher pHR values. The electrical conductance and maximum pore power of the Co(en)3Cl3 solution are significantly higher compared to salts with monovalent and divalent cations. Furthermore, the magnitude of these two parameters decreases with lower pHR and becomes insensitive to higher pHR values. The results illustrate that the maximum electrical energy conversion efficiency enhances with pHR, reaching its highest level for the Co(en)3Cl3 solution. We expect that the findings of the current work will have a significant bearing on the design and development of a state-of-the-art salinity gradient-based energy convertor as a potential candidate for renewable energy sources.

9.
Soft Matter ; 19(6): 1152-1163, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36633007

RESUMO

The salinity gradient energy or the 'blue energy' is one of the most promising inexpensive and abundant sources of clean energy, having immense capabilities to serve modern-day society. In this article, we overlay an extensive analysis of reverse electrodialysis (RED) for harvesting salinity gradient energy in a single conical nanochannel, grafted with a pH-tunable polyelectrolyte layer (PEL) on the inner surfaces. We primarily focus on the distinctiveness of the solution pH of the connecting reservoirs. In spite of acquiring a maximum power density of ∼1.2 kW m-2 in the chosen configuration, we notice a counter-intuitive patterning of the ion transport for a certain span of pH, leading to diminishing power. To this end, we discuss the possible strategic avenues essentially to achieve a higher amount of power density. In order to achieve a desirable outcome within that pH zone, we employ two separate approaches intending to counter the underlying physics. Results reveal a great enhancement in the power density as well as in the efficiency even under the framework of both strategies proposed herein. Moreover, as shown, the window of solution pH has increased by three times, implicating the maximum power density mentioned above. We expect that the strategic procedure of augmented energy harvesting as discussed in this analysis can be of importance from the perspective of fabricating state-of-the-art nanodevices aimed at blue energy harvesting.

10.
Phys Chem Chem Phys ; 24(34): 20303-20317, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35979759

RESUMO

Salinity energy generation (SEG) studies have only been done under isothermal conditions at ambient temperature. The production of salinity energy can be improved under non-isothermal conditions, albeit preserving the energy efficiency. In the current study, the effects of gradients of temperature and concentration on the salinity energy generation process were examined simultaneously. Based on the temperature-dependent properties resulting from both temperature and concentration gradients, a numerical study was carried out to determine the maximum efficiency of salinity energy generation in funnel-shaped soft nanochannels. It was presumed that a dense layer of negative charge, called a polyelectrolyte layer (PEL), is coated on the walls of the nanochannels. Co-current and counter-current modes were used to obtain temperature and concentration gradients. Under steady-state conditions, the Poisson-Nernst-Planck, Stokes-Brinkman, and energy equations were numerically solved using equivalent approaches. The results revealed that by increasing the temperature and concentration ratios in both co-current and counter-current modes of operation, the salinity energy generation increased appreciably. The salinity energy generation increased from 30 to 80 pW upon increasing the temperature ratio from 1 to 8 at a constant concentration ratio of 1000 in counter-current mode. As verified from this analysis, low-grade heat sources (<100 °C) provide considerable energy conversion in PEL grafted nanofluidic confinement when placed between electrolyte solutions of different temperatures.

11.
Electrophoresis ; 42(23): 2465-2473, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33856072

RESUMO

We discuss, in this article, the solution method of the unsteady electroosmotic flow of Newtonian fluid in a square microfluidic channel cross-section in the framework of spreadsheet analysis. We demonstrate the implementation of the finite difference scheme, which is used for the discretization of the transport equations governing the flow dynamics of the present problem, in the spreadsheet tool. Also, we have shown the implementation details of different boundary conditions, which are typically used for the underlying electrohydrodynamics in a microfluidic channel, in the spreadsheet analysis tool. We show that the results obtained from the spreadsheet analysis match accurately with the numerical solutions for both the electrostatic potential distribution and the flow velocity. Our results of this analysis justify the credibility of the spreadsheet tool for capturing the intricate details of the electrically actuated microflows during the initial transiences, that is, for the start-up flows and the phenomenon due to the electrical double layer effect, quite effectively. The inferences of this analysis will open up a new research paradigm of microfluidics and microscale transport processes by providing the potential applicability of the spreadsheet tools to obtain the flow physics of our interest in a very intuitive and less expensive manner.


Assuntos
Eletro-Osmose , Microfluídica , Modelos Teóricos
12.
Electrophoresis ; 42(23): 2498-2510, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33527431

RESUMO

We propose a micromixer for obtaining better efficiency of vortex induced electroosmotic mixing of non-Newtonian bio-fluids at a relatively higher flow rate, which finds relevance in many biomedical and biological applications. To represent the rheology of non-Newtonian fluid, we consider the Carreau model in this study, while the applied electric field drives the constituent components in the micromixer. We show that the spatial variation of the applied field, triggered by the topological change of the bounding surfaces, upon interacting with the non-uniform surface potential gives rise to efficient mixing as realized by the formation of vortices in the proposed micromixer. Also, we show that the phase-lag between surface potential leads to the formation of asymmetric vortices. This behavior offers better mixing performance following the appearance of undulation on the flow pattern. Finally, we establish that the assumption of a point charge in the paradigm of electroosmotic mixing, which is not realistic as well, under-predicts the mixing efficiency at higher amplitude of the non-uniform zeta potential. The inferences of the present analysis may guide as a design tool for micromixer where rheological properties of the fluid and flow actuation parameters can be simultaneously tuned to obtain phenomenal enhancement in mixing efficiency.


Assuntos
Eletro-Osmose , Modelos Químicos , Reologia
13.
Langmuir ; 37(1): 63-75, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33356294

RESUMO

We study the spreading dynamics of a sphere-shaped elastic non-Newtonian liquid drop on a spherical substrate in the capillary-driven regime. We use the simplified Phan-Thien-Tanner model to represent the rheology of the elastic non-Newtonian drop. We consider the drop to be a crater on a flat substrate to calculate the viscous dissipation near the contact line. Following the approach compatible with the capillary-viscous force balance, we establish the evolution equation for describing the temporal evolution of the contact line during spreading. We show that the contact line velocity obtained from the theoretical calculation matches well with our experimental observations. Also, as confirmed by the present experimental observations, our analysis deems efficient to capture the phenomenon during the late stage of spreading for which the effect of line tension becomes dominant. An increment in the viscoelastic parameter of the fluid increases the viscous dissipation effect at the contact line. It is seen that the higher dissipation effect leads to an enhancement in the wetting time of the drop on the spherical substrate. Also, we have shown that the elastic nature of the fluid leads to an increment in the dynamic contact angle at any temporal instant as compared to its Newtonian counterpart. Finally, we unveil that the phenomenon of the increasing contact angle results in the time required for the complete wetting of drop, which becomes higher with increasing viscoelasticity of the fluid. This article will fill a gap still affecting the existing literature because of the unavailability of experimental investigations of the spreading of the elastic non-Newtonian drop on a spherical substrate.

14.
Appl Opt ; 60(4): 1031-1040, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690417

RESUMO

A new autofocusing algorithm for digital holography is proposed based on the eigenvalues of the images reconstructed at different distances in the measurement volume. An image quality metric evaluated based on the distribution of its eigenvalues is compared in function of the reconstruction distance to identify the location of the focal plane. The proposed automatic focal plane detection algorithm is capable of working with amplitude objects, phase objects, and mixed type objects. A performance comparison of the proposed algorithm with some previously reported representative algorithms is provided. The simulation and experimental results demonstrate the practical applicability of the proposed algorithm.

15.
Soft Matter ; 16(28): 6619-6632, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32613210

RESUMO

We experimentally investigate the evaporation kinetics of a sessile ferrofluid droplet placed on a soft substrate in the presence of a time-dependent magnetic field. We use both bright field visualization techniques and µ-PIV analysis to gain qualitative as well as quantitative insights into the internal hydrodynamics of the droplet. The results show that the droplet evaporation rate is augmented significantly in the presence of a time-dependent magnetic field, attributed primarily to the enhanced internal flow advection. We show that the motion of the magnetic nanoparticles dictates the overall life-time of the evaporating ferrofluid droplet. At lower frequencies of the magnetic field, the magnetic nanoparticles move towards the magnet and agglomerate into a chain-like cluster formation, oriented according to the magnetic field lines. On the other hand, at higher frequencies, the magnetic nanoparticles do not have sufficient time to travel the whole characteristic length (droplet diameter). Consequently, we observe the presence of a critical frequency at which the perturbation time scale balances the advective time scale of the flow inside the droplet. We show that on account for this balance between the time scales, the droplet experiences a minimum life-time. Finally, we demonstrate that the evaporation kinetics of a ferrofluid droplet in the presence of a time-dependent magnetic field can be described through three distinguishable stages viz., the decreasing contact angle and variable radius zone, the decreasing contact angle and decreasing radius zone and the late mixed zone. The inferences drawn from this study could have far-reaching implications in fields ranging from biomedical engineering to surface patterning.

16.
Soft Matter ; 16(27): 6304-6316, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32572423

RESUMO

We propose a novel and efficient mixing technique in a soft narrow-fluidic channel under the influence of electrical forcing. We show that a grafted polyelectrolyte layer (PEL) added as a patch to the channel wall modulates the electrical double layer (EDL) so that an applied electric field initiates a local electroosmotic flow (EOF) at the patched section. This EOF develops in the opposite direction to the primary pressure-driven flow. This localized EOF leads to the formation of Lamb vortices at the patched sections through the phenomenon of momentum exchange with the primary stream and promotes the mixing therein. Our study, consistent with the stream-function/vorticity approach, primarily focuses on the numerical analysis of the mixing phenomena. Through a quantitative description, we reveal the effect of different patterns on the underlying mixing phenomena in the convective mixing regime. We also discuss the impact of key parameters on the mixing efficiency, the onset of the recirculation zone, variation in the mixing length, and the shear-driven aggregation kinetics in soft matter systems. Finally, considering the practicability of the present problem, we unveil the values of several design parameters for which the mixing efficiency in the channel reaches the maximum.

17.
Entropy (Basel) ; 20(1)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33265137

RESUMO

We investigate the effect of viscous dissipation on the thermal transport characteristics of heat and its consequence in terms of the entropy-generation rate in a circular Couette flow. We consider the flow of a Newtonian fluid through a narrow annular space between two asymmetrically-heated concentric micro-cylinders where the inner cylinder is rotating at a constant speed. Employing an analytical methodology, we demonstrate the temperature distribution and its consequential effects on the heat-transfer and entropy-generation behaviour in the annulus. We bring out the momentous effect of viscous dissipation on the underlying transport of heat as modulated by the degree of thermal asymmetries. Our results also show that the variation of the Nusselt number exhibits an unbounded swing for some values of the Brinkman number and degrees of asymmetrical wall heating. We explain the appearance of unbounded swing on the variation of the Nusselt number from the energy balance in the flow field as well as from the second law of thermodynamics. We believe that the insights obtained from the present analysis may improve the design of micro-rotating devices/systems.

18.
Electrophoresis ; 38(5): 596-606, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27921289

RESUMO

We investigate the slip-driven transport of a Newtonian fluid through porous media under electrical double layer effect. We employ a semianalytical framework to obtain the underlying electrohydrodynamics for different configurations of porous media. We bring out an alteration in flow dynamics, stemming from interplay among the geometrical feature of the models and the interfacial slip as modulated by the electrical forcing. Further, we show the consequent effects of the underlying flow dynamics on the volumetric transport rate through different models. Also, we show the inception of reverse flow in the region close to the wall, resulting from the induced pressure gradient due to the convection of co-ions in the opposite direction to flow and pinpoint its effect of the flow rate variation under the influence of interfacial slip. We believe that the inferences obtained from the present analysis may improve the design of bio-MEMS (microelectromechanical systems) and microfluidic devices, which are used for in-situ bioremediation.


Assuntos
Eletro-Osmose/métodos , Sistemas Microeletromecânicos/métodos , Modelos Teóricos , Hidrodinâmica , Porosidade
19.
Electrophoresis ; 37(14): 1998-2009, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27079927

RESUMO

We investigate the transport of immiscible binary fluid layers, constituted by one conducting (top layer fluid) and another non-conducting (bottom layer fluid) fluids in a microfluidic channel under the combined influences of an applied pressure gradient and imposed electric field. We solve the transport equation governing the flow dynamics analytically and obtain the closed-form expressions of the velocity fields. We bring out the alteration in the flow dynamics, mainly attributable to the non-linear interaction between interfacial slip and the electrical double layer effect over small scales as modulated by the applied pressure gradient. In particular, we show the augmentation in the net volume transport rate through the channel, emerging from an intricate competition among electrical forcing, applied pressure gradient and the viscous resistance as modulated by the interfacial slip. We believe that the results of this study may be of immense consequence for the design of various microfluidic devises, which are often used for the manipulation of two immiscible fluids in different biomedical/biochemical processes.


Assuntos
Eletroforese/métodos , Modelos Teóricos , Osmose , Pressão
20.
Electrophoresis ; 36(5): 703-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25502924

RESUMO

We investigate the EOF of a Powell-Eyring fluid through a slit microchannel, employing Navier slip boundary condition. Using an analytical scheme consistent with the homotopy perturbation method, we bring out the alteration in the underlying flow dynamics as attributable to the nonlinear interactions between fluid rheology and electrostatics over interfacial scales. We validate the approximate analytical solutions by comparing those with results from numerical analysis. We unveil a regime of phenomenal amplification in the net volumetric flow rate, realized as a consequence of an intricate interplay between interfacial electromechanics, slipping hydrodynamics, and the flow rheology. Our results may have far ranging consequences in the design of various biomicrofluidic devises/systems, which are often used for the manipulation of non-Newtonain fluids.


Assuntos
Eletro-Osmose/métodos , Microfluídica/métodos , Modelos Químicos , Eletricidade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA