Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38597306

RESUMO

Ion channels are proteins that play a significant role in physiological processes, including neuronal excitability and signal transduction. However, the precise mechanisms by which these proteins facilitate ion diffusion through cell membranes are not well understood. This is because experimental techniques to characterize ion channel activity operate on a time scale too large to understand the role of the various protein conformations on diffusion. Meanwhile, computational approaches operate on a time scale too short to rationalize the observed behavior at the microscopic scale. In this paper, we present a continuous-time random walk model that aims to bridge the scales between the atomistic models of ion channels and the experimental measurement of their conductance. We show how diffusion slows down in complex systems by using 3D lattices that map out the pore geometry of two channels: Nav1.7 and gramicidin. We also introduce spatial and dynamic site disorder to account for system heterogeneity beyond the mean field approximation. Computed diffusion coefficients show that an increase in spatial disorder slows down diffusion kinetics, while dynamic disorder has the opposite effect. Our results imply that microscopic or phenomenological models based on the potential of mean force data overlook the functional importance of protein dynamics on ion diffusion through channels.

2.
Cryst Growth Des ; 24(15): 6338-6353, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39131446

RESUMO

Anionic macromolecules are found at sites of CaCO3 biomineralization in diverse organisms, but their roles in crystallization are not well-understood. We prepared a series of sulfated chitosan derivatives with varied positions and degrees of sulfation, DS(SO3 -), and measured calcite nucleation rate onto these materials. Fitting the classical nucleation theory model to the kinetic data reveals the interfacial free energy of the calcite-polysaccharide-solution system, γnet, is lowest for nonsulfated controls and increases with DS(SO3 -). The kinetic prefactor also increases with DS(SO3 -). Simulations of Ca2+-H2O-chitosan systems show greater water structuring around sulfate groups compared to uncharged substituents, independent of sulfate location. Ca2+-SO3 - interactions are solvent-separated by distances that are inversely correlated with DS(SO3 -) of the polysaccharide. The simulations also predict SO3 - and NH3 + groups affect the solvation waters and HCO3 - ions associated with Ca2+. Integrating the experimental and computational evidence suggests sulfate groups influence nucleation by increasing the difficulty of displacing near-surface water, thereby increasing γnet. By correlating γnet and net charge per monosaccharide for diverse polysaccharides, we suggest the solvent-separated interactions of functional groups with Ca2+ influence thermodynamic and kinetic components to crystallization by similar solvent-dominated processes. The findings reiterate the importance of establishing water structure and properties at macromolecule-solution interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA