Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 935975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958224

RESUMO

The path followed by species in the colonization of remote oceanic islands ultimately depends on their phylogenetic constraints and ecological responses. In this study, we aim to evaluate the relative role of geographical and ecological forces in the origin and evolution of the Madeiran ivy (Hedera maderensis), a single-species endemic belonging to the western polyploid clade of Hedera. To determine the phylogenetic placement of H. maderensis within the western polyploid clade, we analyzed 40 populations (92 individuals) using genotyping-by-sequencing and including Hedera helix as outgroup. Climatic niche differences among the study species were evaluated using a database with 867 records representing the entire species ranges. To test species responses to climate, 13 vegetative and reproductive functional traits were examined for 70 populations (335 individuals). Phylogenomic results revealed a nested pattern with H. maderensis embedded within the south-western Iberian H. iberica. Gradual niche differentiation from the coldest and most continental populations of H. iberica to the warm and stable coastal population sister to H. maderensis parallels the geographical pattern observed in the phylogeny. Similarity in functional traits is observed for H. maderensis and H. iberica. The two species show leaves with higher specific leaf area (SLA), lower leaf dry matter content (LDMC) and thickness and fruits with lower pulp fraction than the other western polyploid species H. hibernica. Acquisition of a Macaronesian climatic niche and the associated functional syndrome in mainland European ivies (leaves with high SLA, and low LDMC and thickness, and fruits with less pulp content) was a key step in the colonization of Madeira by the H. iberica/H. maderensis lineage, which points to climatic pre-adaptation as key in the success of island colonization (dispersal and establishment). Once in Madeira, budding speciation was driven by geographical isolation, while ecological processes are regarded as secondary forces with a putative impact in the lack of further in situ diversification.

2.
Curr Biol ; 30(24): 4989-4998.e7, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33007244

RESUMO

Evolutionary radiations on oceanic islands have fascinated biologists since Darwin's exploration of the Galápagos archipelago [1, 2]. Island radiations can provide key insights for understanding rapid speciation, including evolutionary patterns and the processes behind them. However, lack of resolution of species relationships has historically hindered their investigation, particularly in the plant kingdom [3-5]. Here, we report a time-calibrated phylogenomic analysis based on genotyping-by-sequencing data [6] of the 15 species of Scalesia (Darwin's giant daisies), an iconic and understudied plant radiation endemic to the Galápagos Islands and considered the plant counterpart to Darwin's finches [1, 7-9]. Results support a Pliocene to early Pleistocene divergence between Scalesia and the closest South American relatives, and rapid diversification of extant Scalesia species from a common ancestor dated to the Middle Pleistocene. Major evolutionary patterns in Scalesia include the following: (1) lack of compliance with the "progression rule" hypothesis, in which earlier diverging lineages are expected to occupy older islands; (2) a predominance of within-island speciation over between-island speciation; and (3) repeated convergent evolution of potentially adaptive traits and habitat preferences on different islands during the course of diversification. Massive sequencing provided the essential framework for investigating evolutionary and ecological processes in the complex natural laboratory of the Galápagos, thereby advancing our understanding of island plant radiations.


Assuntos
Asteraceae/genética , Especiação Genética , Dispersão Vegetal/genética , Equador , Ilhas , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA