Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Opt Lett ; 42(18): 3530-3533, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914893

RESUMO

Applications using multi-PW lasers necessitate high temporal pulse quality with a tremendous contrast ratio (CR). The first crucial prerequisite to achieve multi-PW peak power is the generation of ultrashort pulses with good spectral phase quality. Second, to avoid any deleterious pre-ionization effect on targets, nanosecond contrast better than 1012 is also targeted. In the framework of the Apollon 10 PW French laser program, we present a high-contrast 10 fs front-end design study to inject highly energetic Ti:sapphire PW lasers. The CR has been measured and analyzed in different time ranges highlighting the different major contributions for each scale.

2.
Opt Express ; 19(1): 93-8, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21263545

RESUMO

The generation of high contrast and ultrashort laser pulses via a compact and energy-scalable cross polarized wave filter is presented. The setup incorporates a waveguide spatial filter into a single crystal XPW configuration, enabling high energy and high intensity transmission, efficient contrast enhancement and pulse shortening at the multi-mJ level. Excellent XPW conversion of up to 33% (global efficiency: 20%, intensity transmission: 40%) led to an output energy of 650 µJ for an input of 3.3 mJ. Additionally, efficient conversion under specific input phase conditions, allowed pulse shortening from 25 fs to 9.6 fs, indicating the prospective application of this setup as a high energy, ultrabroad laser source.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 2): 056405, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19518574

RESUMO

We use optical interferometry to study the propagation of femtosecond laser pulses in gases. We show the measurements of propagation in a nitrogen gas jet and we compare the results with propagation in He under the same irradiation conditions. We find that in the case of nitrogen, the detailed temporal structure of the laser pulse can be tracked and visualized by measuring the phase and the resulting electron-density map. A dramatically different behavior occurs in He gas jets, where no details of the temporal structure of the laser pulse are visible. These observations are explained in terms of the ionization dynamics of nitrogen compared to helium. These circumstances make N2 gas sensitive to variations in the electric field and, therefore, allow the laser-pulse temporal and spatial structures to be visualized in detail.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(3 Pt 2): 036403, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17025750

RESUMO

We use optical interferometry to investigate ultrafast ionization induced by an intense, ultrashort laser pulse propagating in a helium gas. Besides standard phase shift information, our interferograms show a localized region of fringe visibility depletion (FVD) that moves along the laser propagation axis at luminal velocity. We find that such a loss of visibility can be quantitatively explained by the ultrafast change of refractive index due to the field ionization of the gas in the laser pulse width. We demonstrate that by combining the post facto phase shift distribution with the probe pulse transit effect in the ionizing region, the analysis of the observed FVD yields significant information on the ultrafast dynamics of propagation of the ionization front in the gas.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(4 Pt 2B): 047403, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12006081

RESUMO

We present a detailed study on the spatiotemporal density evolution of a plasma created by optical-field ionization of a high-pressure pulsed gas jet by a 10-TW, 60-fs Ti:sapphire laser. The plasma dynamics has been studied on a 17-ns time scale with a 60-fs time resolution and a 5-microm space resolution using a Mach-Zehnder interferometer. The density profile and the plasma radial expansion were accurately measured for conditions relevant to x-ray laser schemes in H-like nitrogen which were recently proposed [S. Hulin et al., Phys. Rev. E 61, 5693 (2000)]. The results were reproduced well by hydrocode simulations that allowed to infer the plasma temperature.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(1 Pt 2): 016402, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12636606

RESUMO

Spectra in the 7.10 to 8.60 A range from highly charged copper ions are observed from three different laser-produced plasmas (LPPs). The LPPs are formed by a 15-ns Nd:glass laser pulse (type I: E(pulse)=1-8 J, lambda=1.064 microm), a 1-ps Nd:glass laser pulse (type II: E(pulse)=1 J, lambda=1.055 microm), and a 60-fs Ti:sapphire laser pulse (type III: E(pulse)=800 mJ, lambda=790 nm). The spectra of high-n (n

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(4 Pt 2): 046412, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12443335

RESUMO

Strong L-shell x-ray emission has been obtained from Kr clusters formed in gas jets and irradiated by 60-500-fs laser pulses. Spectral lines from the F-, Ne- Na-, and Mg-like charge states of Kr have been identified from highly resolved x-ray spectra. Spectral line intensities are used in conjunction with a detailed time-dependent collisional-radiative model to diagnose the electron distribution functions of plasmas formed in various gas jet nozzles with various laser pulse durations. It is shown that L-shell spectra formed by relatively long nanosecond-laser pulses can be well described by a steady-state model without hot electrons when opacity effects are included. In contrast, adequate modeling of L-shell spectra from highly transient and inhomogeneous femtosecond-laser plasmas requires including the influence of hot electrons. It is shown that femtosecond-laser interaction with gas jets from conical nozzles produces plasmas with higher ionization balances than plasmas formed by gas jets from Laval nozzles, in agreement with previous work for femtosecond laser interaction with Ar clusters.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 2B): 036410, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11909265

RESUMO

High temperature plasmas have been created by irradiating Ar clusters with high intensity 60-fs laser pulses. Detailed spectroscopic analysis of spatially resolved, high resolution x-ray data near the He(alpha) line of Ar is consistent with a two-temperature collisional-radiative model incorporating the effects of highly energetic electrons. The results of the spectral analysis are compared with a theoretical hydrodynamic model of cluster production, as well as interferometric data. The plasma parameters are notably uniform over one Rayleigh length (600 microm).

9.
Phys Rev Lett ; 70(9): 1232-1235, 1993 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10054324
12.
Rev Sci Instrum ; 80(11): 113102, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19947712

RESUMO

We report on an innovative two-dimensional imaging extreme ultraviolet (XUV) interferometer operating at 32 nm based on the mutual coherence of two laser high order harmonics (HOH) sources, separately generated in gas. We give the first evidence that the two mutually coherent HOH sources can be produced in two independent spatially separated gas jets, allowing for probing centimeter-sized objects. A magnification factor of 10 leads to a micron resolution associated with a subpicosecond temporal resolution. Single shot interferograms with a fringe visibility better than 30% are routinely produced. As a test of the XUV interferometer, we measure a maximum electronic density of 3x10(20) cm(-3) 1.1 ns after the creation of a plasma on aluminum target.

13.
Phys Rev Lett ; 100(9): 095004, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18352718

RESUMO

As a high-intensity laser-pulse reflects on a plasma mirror, high-order harmonics of the incident frequency can be generated in the reflected beam. We present a numerical study of the phase properties of these individual harmonics, and demonstrate experimentally that they can be coherently controlled through the phase of the driving laser field. The harmonic intrinsic phase, resulting from the generation process, is directly related to the coherent sub-laser-cycle dynamics of plasma electrons, and thus constitutes a new experimental probe of these dynamics.

14.
Phys Rev Lett ; 101(10): 105002, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18851220

RESUMO

A gamma-ray source with an intense component around the giant dipole resonance for photonuclear absorption has been obtained via bremsstrahlung of electron bunches driven by a 10-TW tabletop laser. 3D particle-in-cell simulation proves the achievement of a nonlinear regime leading to efficient acceleration of several sequential electron bunches per each laser pulse. The rate of the gamma-ray yield in the giant dipole resonance region (8

15.
Phys Rev Lett ; 99(18): 185002, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17995415

RESUMO

We report on simultaneous measurements of backward- and forward-accelerated protons spectra when an ultrahigh intensity (approximately 5 x 10(18) W/cm(20), ultrahigh contrast (>10(10)) laser pulse interacts with foils of thickness ranging from 0.08 to 105 microm. Under such conditions, free of preplasma originating from ionization of the laser-irradiated surface, we show that the maximum proton energies are proportional to the p component of the laser electric field only and not to the ponderomotive force and that the characteristics of the proton beams originating from both target sides are almost identical. All these points have been corroborated by extensive 1D and 2D particle-in-cell simulations showing a very good agreement with the experimental data.

16.
Phys Rev Lett ; 96(12): 125004, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16605917

RESUMO

We present a new mechanism for high-order harmonic generation by reflection of a laser beam from an overdense plasma, efficient even at moderate laser intensities (down to Igamma2 approximately 4x10(15) W cm-2 microm2). In this mechanism, a transient phase matching between the electromagnetic field and plasma oscillations within a density gradient leads to the emission of harmonics up to the plasma frequency. These plasma oscillations are periodically excited in the wake of attosecond electron bunches which sweep across the density gradient. This process leads to a train of unevenly spaced chirped attosecond pulses and, hence, to broadened and chirped harmonics. This last effect is confirmed experimentally.

17.
Phys Rev Lett ; 95(2): 025001, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-16090690

RESUMO

In this Letter, we demonstrate the instantaneous creation of a hot solid-density plasma generated by focusing an intense femtosecond, high temporal contrast laser on an ultrathin foil (100 nm) in the 10(18) W/cm2 intensity range. The use of high-order harmonics generated in a gas jet, providing a probe beam of sufficiently short wavelengths to penetrate such a medium, enables the study of the dynamics of this plasma on the 100 fs time scale. The comparison of the transmission of two successive harmonics permits us to determine the electronic density and the temperature with accuracies better than 15%, never achieved up to this date in the regime of laser pulses at relativistic intensity.

18.
Artigo em Inglês | MEDLINE | ID: mdl-11970139

RESUMO

We have observed evidence of the emission of energetic He-and H-like ions of fluorine more than 1 MeV produced via the optical field ionization (OFI) from a solid target irradiated by an intense I=(2-4)x10(18) W/cm(2) (60 fs, lambda=800 nm), obliquely incident p-polarized pulse laser. The measured blue wing of He(alpha), He(beta), and Ly(alpha) lines of fluorine shows a feature of the Doppler-shifted spectrum due to the self-similar ion expansion dominated by superthermal electrons with the temperature T(h) approximately 100 keV. Using a collisional particle-in-cell simulation, which incorporates the nonlocal-thermodynamic-equilibrium ionization including OFI, we have obtained the plasma temperature, line shape, and maximal energy of accelerated ions, which agree well with those determined from the experimental spectra. The red wing of ion spectra gives the temperature of bulk plasma electrons.

19.
Artigo em Inglês | MEDLINE | ID: mdl-11031628

RESUMO

An x-ray laser scheme based on the recombination of a fully stripped nitrogen plasma is presented. Plasma is assumed to be created by the optical-field ionization of a nitrogen gas jet of 10(19) cm-3 atomic density by an ultrashort (60 fs), high-intensity (3 x 10(19) W/cm2) Ti:sapphire laser. Results of two-dimensional particle-in-cell simulations, modeling laser-plasma interaction, parametric heating, and ponderomotive effects are presented. Hydrodynamic and kinetics calculations are performed and predict important local gain for H-like nitrogen transitions at 25 and 134 A, following fast collisional recombination for specific plasma conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA