Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 86(19): 10444-55, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22811533

RESUMO

Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) O104:H4 caused one of the world's largest outbreaks of hemorrhagic colitis and hemolytic uremic syndrome in Germany in 2011. These strains have evolved from enteroaggregative E. coli (EAEC) by the acquisition of the Stx2 genes and have been designated enteroaggregative hemorrhagic E. coli. Nucleotide sequencing has shown that the Stx2 gene is carried by prophages integrated into the chromosome of STEC O104:H4. We studied the properties of Stx2-encoding bacteriophages which are responsible for the emergence of this new type of E. coli pathogen. For this, we analyzed Stx bacteriophages from STEC O104:H4 strains from Germany (in 2001 and 2011), Norway (2006), and the Republic of Georgia (2009). Viable Stx2-encoding bacteriophages could be isolated from all STEC strains except for the Norwegian strain. The Stx2 phages formed lysogens on E. coli K-12 by integration into the wrbA locus, resulting in Stx2 production. The nucleotide sequence of the Stx2 phage P13374 of a German STEC O104:H4 outbreak was determined. From the bioinformatic analyses of the prophage sequence of 60,894 bp, 79 open reading frames were inferred. Interestingly, the Stx2 phages from the German 2001 and 2011 outbreak strains were found to be identical and closely related to the Stx2 phages from the Georgian 2009 isolates. Major proteins of the virion particles were analyzed by mass spectrometry. Stx2 production in STEC O104:H4 strains was inducible by mitomycin C and was compared to Stx2 production of E. coli K-12 lysogens.


Assuntos
Bacteriófagos/genética , Escherichia coli/metabolismo , Toxina Shiga II/metabolismo , Adulto , Sequência de Aminoácidos , Criança , Feminino , República da Geórgia , Alemanha , Humanos , Lisogenia , Masculino , Espectrometria de Massas/métodos , Microscopia Eletrônica de Transmissão/métodos , Mitomicina/química , Dados de Sequência Molecular , Myoviridae/metabolismo , Noruega , Análise de Sequência de DNA , Escherichia coli Shiga Toxigênica/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Vírion
2.
J Virol ; 80(16): 8145-50, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16873270

RESUMO

Preferential integration into transcriptionally active regions of genomes has been observed for retroviral vectors based on gamma-retroviruses and lentiviruses. However, differences in the integration site preferences were detected, which might be explained by differences in viral components of the preintegration complexes. Viral determinants of integration site preferences have not been defined. Therefore, integration sites of simian immunodeficiency virus (SIV)-based vectors produced in the absence of accessory genes or lacking promoter and enhancer elements were compared. Similar integration patterns for the different SIV vectors indicate that vif, vpr, vpx, nef, env, and promoter or enhancer elements are not required for preferential integration of SIV into transcriptionally active regions of genomes.


Assuntos
Vetores Genéticos/genética , Vírus da Imunodeficiência Símia/genética , Integração Viral/genética , Células Cultivadas , Mapeamento Cromossômico , Genoma Humano , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA