Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 7(6): e1002052, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21731476

RESUMO

In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned 'credit' for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use.


Assuntos
Inteligência Artificial , Biologia Computacional/métodos , Aprendizagem/fisiologia , Modelos Neurológicos , Atividade Motora/fisiologia , Adaptação Fisiológica , Adolescente , Adulto , Algoritmos , Braço , Teorema de Bayes , Feminino , Força da Mão , Humanos , Masculino , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA