Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 390, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910175

RESUMO

Microalgae are gaining attention as they are considered green fabrics able to synthesize many bioactive metabolites, with unique biological activities. However, their use at an industrial scale is still a challenge because of the high costs related to upstream and downstream processes. Here, a biorefinery approach was proposed, starting from the biomass of the green microalga Pseudococcomyxa simplex for the extraction of two classes of molecules with a potential use in the cosmetic industry. Carotenoids were extracted first by an ultrasound-assisted extraction, and then, from the residual biomass, lipids were obtained by a conventional extraction. The chemical characterization of the ethanol extract indicated lutein, a biosynthetic derivative of α-carotene, as the most abundant carotenoid. The extract was found to be fully biocompatible on a cell-based model, active as antioxidant and with an in vitro anti-aging property. In particular, the lutein-enriched fraction was able to activate Nrf2 pathway, which plays a key role also in aging process. Finally, lipids were isolated from the residual biomass and the isolated fatty acids fraction was composed by palmitic and stearic acids. These molecules, fully biocompatible, can find application as emulsifiers and softener agents in cosmetic formulations. Thus, an untapped microalgal species can represent a sustainable source for cosmeceutical formulations. KEY POINTS: • Pseudococcomyxa simplex has been explored in a cascade approach. • Lutein is the main extracted carotenoid and has antioxidant and anti-aging activity. • Fatty acids are mainly composed of palmitic and stearic acids.


Assuntos
Cosméticos , Microalgas , Microalgas/metabolismo , Microalgas/química , Cosméticos/química , Carotenoides/química , Carotenoides/isolamento & purificação , Biomassa , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Luteína/isolamento & purificação , Luteína/química , Luteína/metabolismo , Humanos , Ácidos Graxos/química
2.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768690

RESUMO

This study describes new platinum(II) cationic five-coordinate complexes (1-R,R') of the formula [PtR(NHC)(dmphen)(ethene)]CF3SO3 (dmphen = 2,9-dimethyl-1,10-phenanthroline), containing in their axial positions an alkyl group R (methyl or octyl) and an imidazole-based NHC-carbene ligand with a substituent R' of variable length (methyl or octyl) on one nitrogen atom. The Pt-carbene bond is stable both in DMSO and in aqueous solvents. In DMSO, a gradual substitution of dmphen and ethene is observed, with the formation of a square planar solvated species. Octanol/water partitioning studies have revealed the order of hydrophobicity of the complexes (1-Oct,Me > 1-Oct,Oct > 1-Me,Oct > 1-Me,Me). Their biological activity was investigated against two pairs of cancer and non-cancer cell lines. The tested drugs were internalized in cancer cells and able to activate the apoptotic pathway. The reactivity of 1-Me,Me with DNA and protein model systems was also studied using UV-vis absorption spectroscopy, fluorescence, and X-ray crystallography. The compound binds DNA and interacts in various ways with the model protein lysozyme. Remarkably, structural data revealed that the complex can bind lysozyme via non-covalent interactions, retaining its five-coordinate geometry.


Assuntos
Antineoplásicos , Muramidase , Antineoplásicos/farmacologia , Antineoplásicos/química , Cristalografia por Raios X , Dimetil Sulfóxido , DNA , Interações Hidrofóbicas e Hidrofílicas , Compostos de Platina/química , Compostos de Platina/farmacologia
3.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003214

RESUMO

This study investigated the antibiofilm activity of water-soluble extracts obtained under different pH conditions from Cannabis sativa seeds and from previously defatted seeds. The chemical composition of the extracts, determined through GC-MS and NMR, revealed complex mixtures of fatty acids, monosaccharides, amino acids and glycerol in ratios depending on extraction pH. In particular, the extract obtained at pH 7 from defatted seeds (Ex7d) contained a larger variety of sugars compared to the others. Saturated and unsaturated fatty acids were found in all of the analysed extracts, but linoleic acid (C18:2) was detected only in the extracts obtained at pH 7 and pH 10. The extracts did not show cytotoxicity to HaCaT cells and significantly inhibited the formation of Staphylococcus epidermidis biofilms. The exception was the extract obtained at pH 10, which appeared to be less active. Ex7d showed the highest antibiofilm activity, i.e., around 90%. Ex7d was further fractionated by HPLC, and the antibiofilm activity of all fractions was evaluated. The 2D-NMR analysis highlighted that the most active fraction was largely composed of glycerolipids. This evidence suggested that these molecules are probably responsible for the observed antibiofilm effect but does not exclude a possible synergistic contribution by the other components.


Assuntos
Cannabis , Staphylococcus epidermidis , Cannabis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Biofilmes , Sementes/química
4.
Molecules ; 28(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049907

RESUMO

Microalgal biomass represents a very interesting biological feedstock to be converted into several high-value products in a biorefinery approach. In this study, the cyanobacterium Synechocystis sp. PCC6803 was used to obtain different classes of molecules: proteins, carotenoids and lipids by using a cascade approach. In particular, the protein extract showed a selective cytotoxicity towards cancer cells, whereas carotenoids were found to be active as antioxidants both in vitro and on a cell-based model. Finally, for the first time, lipids were recovered from Synechocystis biomass as the last class of molecules and were successfully used as an alternative substrate for the production of polyhydroxyalkanoate (PHA) by the native PHA producer Pseudomonas resinovorans. Taken together, our results lead to a significant increase in the valorization of Synechocystis sp. PCC6803 biomass, thus allowing a possible offsetting of the process costs.


Assuntos
Poli-Hidroxialcanoatos , Synechocystis , Synechocystis/metabolismo , Poli-Hidroxialcanoatos/metabolismo
5.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771054

RESUMO

The aim of this research was the synthesis of silver nanoparticles (SPA- and SPR-AgNPs) using the aqueous extracts of the aerial (SPA) and the root (SPR) parts of the plant Salvia pratensis L., their characterization, reaction condition optimization, and evaluation of their biological and catalytic activity. UV-Vis spectroscopy, X-ray powder diffraction (XRPD), scanning electron microscopy with EDS analysis (SEM/EDS), and dynamic light scattering (DLS) analysis were utilized to characterize the nanoparticles, while Fourier transform infrared (FTIR) spectroscopy was used to detect some functional groups of compounds present in the plant extracts and nanoparticles. The phenolic and flavonoid contents, as well as the antioxidant activity of the extracts, were determined spectrophotometrically. The synthesized nanoparticles showed twice-higher activity in neutralizing 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) compared with the respective extracts. SPR-AgNPs exhibited strong antimicrobial activity against almost all of the tested bacteria (<0.0039 mg/mL) and fungal strains, especially against the genus Penicillium (<0.0391 mg/mL). Moreover, they were fully biocompatible on all the tested eukaryotic cells, while the hemolysis of erythrocytes was not observed at the highest tested concentration of 150 µg/mL. The catalytic activity of nanoparticles toward Congo Red and 4-nitrophenol was also demonstrated. The obtained results confirm the possibility of the safe application of the synthesized nanoparticles in medicine and as a catalyst in various processes.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Componentes Aéreos da Planta
6.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613763

RESUMO

Apolipoprotein A-I (ApoA-I) amyloidosis is a rare protein misfolding disease where fibrils of the N-terminal domain of the protein accumulate in several organs, leading to their failure. Although ApoA-I amyloidosis is systemic, the different amyloidogenic variants show a preferential tissue accumulation that appears to correlate with the location of the mutation in the protein sequence and with the local extracellular microenvironment. However, the factors leading to cell/tissues damage, as well as the mechanisms behind the observed organ specificity are mostly unknown. Therefore, we investigated the impact of ApoA-I variants on cell physiology and the mechanisms driving the observed tissue specificity. We focused on four ApoA-I amyloidogenic variants and analyzed their cytotoxicity as well as their ability to alter redox homeostasis in cell lines from different tissues (liver, kidney, heart, skin). Moreover, variant-specific interactions with extracellular matrix (ECM) components were measured by synchrotron radiation circular dichroism and enzyme-linked immunosorbent assay. Data indicated that ApoA-I variants exerted a cytotoxic effect in a time and cell-type-specific manner that seems to be due to protein accumulation in lysosomes. Interestingly, the ApoA-I variants exhibited specific preferential binding to the ECM components, reflecting their tissue accumulation pattern in vivo. While the binding did not to appear to affect protein conformations in solution, extended incubation of the amyloidogenic variants in the presence of different ECM components resulted in different aggregation propensity and aggregation patterns.


Assuntos
Amiloidose , Apolipoproteína A-I , Humanos , Apolipoproteína A-I/metabolismo , Especificidade de Órgãos/genética , Amiloidose/metabolismo , Mutação , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Amiloide/metabolismo
7.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430642

RESUMO

Auranofin (AF), a gold(I) compound that is currently used for the treatment of rheumatoid arthritis and is in clinical trials for its promising anticancer activity, was encapsulated within the human H-chain and the horse spleen ferritin nanocages using the alkaline disassembly/reassembly protocol. The aim of the work was to highlight possible differences in their drug loading capacity and efficacy. The drug-loaded ferritins were characterized via UV-vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy to assess AF encapsulation and to define the exact amount of gold atoms trapped in the Ft cavity. The crystal structures allowed us to define the nature of AF interaction with both ferritins and to identify the gold binding sites. Moreover, the biological characterization let us to obtain preliminary information on the cytotoxic effect of AF when bound to the human H-chain.


Assuntos
Auranofina , Ferritinas , Sistemas de Liberação de Fármacos por Nanopartículas , Animais , Humanos , Antineoplásicos/química , Auranofina/química , Auranofina/farmacologia , Sítios de Ligação , Ferritinas/química , Ferritinas/metabolismo , Ouro/química , Cavalos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia
8.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408859

RESUMO

Amyloidoses are characterized by the accumulation and aggregation of misfolded proteins into fibrils in different organs, leading to cell death and consequent organ dysfunction. The specific substitution of Leu 75 for Pro in Apolipoprotein A-I protein sequence (ApoA-I; L75P-ApoA-I) results in late onset amyloidosis, where deposition of extracellular protein aggregates damages the normal functions of the liver. In this work, we describe that the autophagic process is inhibited in the presence of the L75P-ApoA-I amyloidogenic variant in stably transfected human hepatocyte carcinoma cells. The L75P-ApoA-I amyloidogenic variant alters the redox status of the cells, resulting into excessive mitochondrial stress and consequent cell death. Moreover, L75P-ApoA-I induces an impairment of the autophagic flux. Pharmacological induction of autophagy or transfection-enforced overexpression of the pro-autophagic transcription factor EB (TFEB) restores proficient proteostasis and reduces oxidative stress in these experimental settings, suggesting that pharmacological stimulation of autophagy could be a promising target to alleviate ApoA-I amyloidosis.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Amiloidose/genética , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Autofagia/genética , Humanos , Agregados Proteicos
9.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445409

RESUMO

This article describes the synthesis, characterization, and biological activity of novel square-planar cationic platinum(II) complexes containing glucoconjugated triazole ligands and a comparison with the results obtained from the corresponding five-coordinate complexes bearing the same triazole ligands. Stability in solution, reactivity with DNA and small molecules of the new compounds were evaluated by NMR, fluorescence, and UV-vis absorption spectroscopy, together with their cytotoxic action against pairs of immortalized and tumorigenic cell lines. The results show that the square-planar species exhibit greater stability than the corresponding five-coordinate ones. Furthermore, although the square-planar complexes are less cytotoxic than the latter ones, they exhibit a certain selectivity. These results simultaneously demonstrate that overall stability is a fundamental prerequisite for preserving the performance of the agents and that coordinative saturation constitutes a point in favor of their biological action.


Assuntos
Antineoplásicos/síntese química , Glucose/química , Compostos Organoplatínicos/síntese química , Triazóis/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ligantes , Células MCF-7 , Estrutura Molecular , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Ratos
10.
World J Microbiol Biotechnol ; 37(12): 215, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762205

RESUMO

The demand for natural antioxidants to be used in food industry is increasing, as synthetic antioxidants are toxic and have high production costs. Specifically, food processing and preservation require antioxidants resistant to thermal sterilization processes. In this study, twenty-five strains among microalgae and cyanobacteria were screened as antioxidants producers. The species Enallax sp., Synechococcus bigranulatus and Galdieria sulphuraria showed the highest content of chlorophyll a and total carotenoids. In vitro stability and antioxidant activity of the ethanolic extracts were performed. The results revealed that pigments present in the extracts, obtained from the previously mentioned species, were stable at room temperature and exhibited in vitro free radical scavenging potential with IC50 values of 0.099 ± 0.001, 0.048 ± 0.001 and 0.13 ± 0.02 mg mL-1, respectively. Biocompatibility assay showed that the extracts were not toxic on immortalized cell lines. The antioxidant activity was also tested on a cell-based model by measuring intracellular ROS levels after sodium arsenite treatment. Noteworthy, extracts were able to exert the same protective effect, before and after the pasteurization process. Results clearly indicate the feasibility of obtaining biologically active and thermostable antioxidants from microalgae. Green solvents can be used to obtain thermo-resistant antioxidants from cyanobacteria and microalgae which can be used in the food industry. Thus, the substitution of synthetic pigments with natural ones is now practicable.


Assuntos
Antioxidantes/química , Cianobactérias/química , Microalgas/química , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Processos Autotróficos , Clorofila A/metabolismo , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Temperatura Alta , Microalgas/metabolismo , Microalgas/efeitos da radiação , Processos Fototróficos , Espécies Reativas de Oxigênio/metabolismo
11.
Inorg Chem ; 59(6): 4002-4014, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32129608

RESUMO

Octahedral Pt(IV) complexes (2Pt-R) containing a glycoconjugate carbene ligand were prepared and fully characterized. These complexes are structural analogues to the trigonal bipyramidal Pt(II) species (1Pt-R) recently described. Thus, an unprecedented direct comparison between the biological properties of Pt compounds with different oxidation states and almost indistinguishable structural features was performed. The stability profile of the novel Pt(IV) compounds in reference solvents was determined and compared to that of the analogous Pt(II) complexes. The uptake and antiproliferative activities of 2Pt-R and 1Pt-R were evaluated on the same panel of cell lines. DNA and protein binding properties were assessed using human serum albumin, the model protein hen egg white lysozyme, and double stranded DNA model systems by a variety of experimental techniques, including UV-vis absorption spectroscopy, fluorescence, circular dichroism, and electrospray ionization mass spectrometry. Although the compounds present similar structures, their in-solution stability, cellular uptake, and DNA binding properties are diverse. These differences may represent the basis of their different cytotoxicity and biological activity.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Glicoconjugados/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Bovinos , Linhagem Celular Tumoral , Galinhas , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Glicoconjugados/síntese química , Glicoconjugados/metabolismo , Humanos , Ligantes , Camundongos , Estrutura Molecular , Muramidase/metabolismo , Platina/química , Ligação Proteica , Albumina Sérica Humana/metabolismo
12.
Appl Microbiol Biotechnol ; 104(21): 9067-9077, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32960292

RESUMO

Microalgae started receiving attention as producers of third generation of biofuel, but they are rich in many bioactive compounds. Indeed, they produce many molecules endowed with benefic effects on human health which are highly requested in the market. Thus, it would be important to fractionate algal biomass into its several high-value compounds: this represents the basis of the microalgal biorefinery approach. Usually, conventional extraction methods have been used to extract a single class of molecules, with many side effects on the environment and on human health. The development of a green downstream platform could help in obtaining different class of molecules with high purity along with low environmental impact. This review is focused on technical advances that have been performed, from classic methods to the newest and green ones. Indeed, it is fundamental to set up new procedures that do not affect the biological activity of the extracted molecules. A comparative analysis has been performed among the conventional methods and the new extraction techniques, i.e., switchable solvents and microwave-assisted and compressed fluid extractions.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Humanos , Micro-Ondas , Solventes
13.
Molecules ; 25(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847116

RESUMO

The design of novel metal complexes with N-heterocyclic carbene (NHC) ligands that display biological activity is an active research field in organometallic chemistry. One of the possible approaches consists of the use of NHC ligands functionalized with a carbohydrate moiety. Two novel Au(I)-Au(I) dinuclear complexes were synthesized; they present a neutral structure with one bridging diNHC ligand, having one or both heterocyclic rings decorated with a carbohydrate functionality. With the symmetric diNHC ligand, the dicationic dinuclear complex bearing two bridging diNHC ligands was also synthesized. The study was completed by analyzing the antiproliferative properties of these complexes, which were compared to the activity displayed by similar mononuclear Au(I) complexes and by the analogous bimetallic Au(I)-Au(I) complex not functionalized with carbohydrates.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Ouro/química , Compostos Heterocíclicos , Neoplasias/tratamento farmacológico , Compostos Organoáuricos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Células 3T3 BALB , Linhagem Celular Tumoral , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organoáuricos/síntese química , Compostos Organoáuricos/química , Compostos Organoáuricos/farmacologia
14.
Appl Microbiol Biotechnol ; 103(23-24): 9455-9464, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31696285

RESUMO

The setup of an economic and sustainable method to increase the production and commercialization of products from microalgae, beyond niche markets, is a challenge. Here, a cascade approach has been designed to optimize the recovery of high valuable bioproducts starting from the wet biomass of Galdieria phlegrea. This unicellular thermo-acidophilic red alga can accumulate high-value compounds and can live under conditions considered hostile to most other species. Extractions were performed in two sequential steps: a conventional high-pressure procedure to recover phycocyanins and a solvent extraction to obtain fatty acids. Phycocyanins were purified to the highest purification grade reported so far and were active as antioxidants on a cell-based model. Fatty acids isolated from the residual biomass contained high amount of PUFAs, more than those recovered from the raw biomass. Thus, a simple, economic, and high effective procedure was set up to isolate phycocyanin at high purity levels and PUFAs.


Assuntos
Ácidos Graxos/isolamento & purificação , Ficocianina/isolamento & purificação , Rodófitas/química , Biomassa , Biotecnologia/métodos , Ácidos Graxos/metabolismo , Ficocianina/metabolismo
15.
Biotechnol Lett ; 41(2): 273-281, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30542947

RESUMO

OBJECTIVE: The antioxidant activity and protective effect of a methanolic extract obtained from the marine Gram-negative bacterium Novosphingobium sp. PP1Y, isolated from the surface water of a polluted area in the harbour of Pozzuoli (Naples, Italy), was evaluated. RESULTS: The extract was tested in vitro on epithelial colorectal adenocarcinoma cells and in vivo on Caenorhabditis elegans. It showed strong protective activity against oxidative stress, in both experimental systems, by preventing ROS accumulation. In the case of the cells, pre-treatment with methanolic extract was also able to maintain unaltered intracellular GSH levels and phosphorylation levels of mitogen-activated protein kinases p38. Instead, in the case of the worms, the extract was able to modulate the expression levels of stress response genes, by activating the transcription factor skn-1. CONCLUSIONS: From a biotechnological and economical point of view, antioxidants from microorganisms are convenient as they provide a valid alternative to chemical synthesis and respond to the ever-growing market demand for natural antioxidants.


Assuntos
Antioxidantes/isolamento & purificação , Caenorhabditis elegans/metabolismo , Neoplasias Colorretais/metabolismo , Metanol/isolamento & purificação , Sphingomonadaceae/metabolismo , Animais , Antioxidantes/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Metabolômica/métodos , Metanol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Sphingomonadaceae/isolamento & purificação , Fatores de Transcrição/genética , Microbiologia da Água , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269636

RESUMO

Marine microorganisms represent a reservoir of new promising secondary metabolites. Surface-active proteins with good emulsification activity can be isolated from fungal species that inhabit the marine environment and can be promising candidates for different biotechnological applications. In this study a novel surface-active protein, named Sap-Pc, was purified from a marine strain of Penicillium chrysogenum. The effect of salt concentration and temperature on protein production was analyzed, and a purification method was set up. The purified protein, identified as Pc13g06930, was annotated as a hypothetical protein. It was able to form emulsions, which were stable for at least one month, with an emulsification index comparable to that of other known surface-active proteins. The surface tension reduction was analyzed as function of protein concentration and a critical micellar concentration of 2 µM was determined. At neutral or alkaline pH, secondary structure changes were monitored over time, concurrently with the appearance of protein precipitation. Formation of amyloid-like fibrils of SAP-Pc was demonstrated by spectroscopic and microscopic analyses. Moreover, the effect of protein concentration, a parameter affecting kinetics of fibril formation, was investigated and an on-pathway involvement of micellar aggregates during the fibril formation process was suggested.


Assuntos
Proteínas Fúngicas/química , Penicillium chrysogenum/química , Tensoativos/química , Amiloide/química , Emulsificantes/química , Emulsificantes/isolamento & purificação , Emulsões/química , Proteínas Fúngicas/isolamento & purificação , Concentração de Íons de Hidrogênio , Micelas , Tensão Superficial , Tensoativos/isolamento & purificação , Temperatura
17.
Molecules ; 24(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086086

RESUMO

The wax apple (Syzygium samarangense) is traditionally employed as an antibacterial and immunostimulant drug in traditional medicine. This plant is rich in different flavonoids and tannins. In this study, we isolated two compounds from S. samarangense leaves: myricitrin and 3,5-di-O-methyl gossypetin. Then, we investigated the mechanisms of action of the two compounds against oxidative stress (induced by sodium arsenite) and inflammation (induced by UV light) on human keratinocytes. We could clearly demonstrate that the pre-treatment of cells with both compounds was able to mitigate the negative effects induced by oxidative stress, as no alteration in reactive oxygen species (ROS) production, glutathione (GSH) level, or protein oxidation was observed. Additionally, both compounds were able to modulate mitogen-activated protein kinase (MAPK) signaling pathways to counteract oxidative stress activation. Finally, we showed that 3,5-di-O-methyl gossypetin exerted its antioxidant activity through the nuclear transcription factor-2 (Nrf-2) pathway, stimulating the expression of antioxidant proteins, such as HO-1 and Mn-SOD-3.


Assuntos
Flavonoides/química , Flavonoides/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Syzygium/química , Antioxidantes/metabolismo , Linhagem Celular , Flavonoides/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
18.
Inorg Chem ; 57(6): 3133-3143, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29509011

RESUMO

This article describes the synthesis and characterization of novel cationic five-coordinate Pt(II) complexes containing nitrogen sugar-based ligands. The cytotoxicity of the complexes was evaluated on different cell lines with the expectation that both the coordinative saturation and the sugar moiety cooperate to enhance their biological activity. In fact, the complexes resulted to be more active than cisplatin but still with little selectivity. They activate the apoptosis pathway. Binding of representative compounds with DNA was studied by ethidium bromide displacement assay and circular dichroism. Binding to model proteins was also investigated; the X-ray structure of the adduct formed in the reaction between a representative compound and the model protein bovine pancreatic ribonuclease was obtained. The structure discloses an unprecedented interaction between a five-coordinate Pt(II) moiety and a His side chain.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Glucosídeos/farmacologia , Platina/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Bovinos , Linhagem Celular Tumoral , Galinhas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , DNA/química , Glucosídeos/síntese química , Glucosídeos/química , Histidina/química , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Ligantes , Estrutura Molecular , Muramidase/química , Ratos , Ribonuclease Pancreático/química
19.
Biometals ; 31(4): 551-559, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29623474

RESUMO

Specific mutations in APOA1 gene lead to systemic, hereditary amyloidoses. In ApoA-I related amyloidosis involving the heart, amyloid deposits are mainly constituted by the 93-residue N-terminal region of the protein, here indicated as [1-93]ApoA-I. Oxidative stress is known to be an enhancing factor for protein aggregation. In healthy conditions, humans are able to counteract the formation and the effects of oxidative molecules. However, aging and atmospheric pollution increase the concentration of oxidative agents, such as metal ions. As the main effect of iron deregulation is proposed to be an increase in oxidative stress, we analysed the effects of iron on [1-93]ApoA-I aggregation. By using different biochemical approaches, we demonstrated that Fe(II) is able to reduce the formation of [1-93]ApoA-I fibrillar species, probably by stabilizing its monomeric form, whereas Fe(III) shows a positive effect on polypeptide fibrillogenesis. We hypothesize that, in healthy conditions, Fe(III) is reduced by the organism to Fe(II), thus inhibiting amyloid formation, whereas during ageing such protective mechanisms decline, thus exposing the organism to higher oxidative stress levels, which are also related to an increase in Fe(III). This alteration could contribute to the pathogenesis of amyloidosis.


Assuntos
Amiloidose Familiar/metabolismo , Apolipoproteína A-I/genética , Ferro/metabolismo , Miocárdio/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Amiloidose Familiar/genética , Amiloidose Familiar/patologia , Apolipoproteína A-I/química , Humanos , Ferro/química , Mutação , Miocárdio/patologia , Estresse Oxidativo/genética , Peptídeos/química , Peptídeos/metabolismo , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/fisiopatologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/fisiopatologia
20.
Biofouling ; 34(10): 1110-1120, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30698031

RESUMO

Staphylococcus epidermidis, a harmless human skin colonizer, is a significant nosocomial pathogen in predisposed hosts because of its capability to form a biofilm on indwelling medical devices. In a recent paper, the purification and identification of the pentadecanal produced by the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, able to impair S. epidermidis biofilm formation, were reported. Here the authors report on the chemical synthesis of pentadecanal derivatives, their anti-biofilm activity on S. epidermidis, and their action in combination with antibiotics. The results clearly indicate that the pentadecanal derivatives were able to prevent, to a different extent, biofilm formation and that pentadecanoic acid positively modulated the antimicrobial activity of the vancomycin. The cytotoxicity of these new anti-biofilm molecules was tested on two different immortalized eukaryotic cell lines in view of their potential applications.


Assuntos
Aldeídos/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Vancomicina/farmacologia , Aldeídos/síntese química , Aldeídos/química , Desinfetantes/síntese química , Desinfetantes/química , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus epidermidis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA