Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Med Microbiol ; 316: 151630, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029415

RESUMO

While fungal infections cause considerable morbidity and mortality, the performance of the current diagnostic tests for fungal infection is low. Even though fungal metagenomics or targeted next-generation sequencing have been investigated for various clinical samples, the real-time clinical utility of these methods still needs to be elucidated. In this study, we used internal transcribed spacer (ITS) and D1-D3 ribosomal DNA nanopore amplicon metagenomic sequencing to assess its utility in patients with fungal infections. Eighty-four samples from seventy-three patients were included and categorized into 'Fungal infection,' 'Fungal colonization,' and 'Fungal contamination' groups based on the judgement of infectious disease specialists. In the 'Fungal infection' group, forty-seven initial samples were obtained from forty-seven patients. Three fungal cases detected not by the sequencing but by conventional fungal assays were excluded from the analysis. In the remaining cases, the conventional fungal assay-negative/sequencing-positive group (n=11) and conventional fungal assay-positive/sequencing-positive group (n=33) were compared. Non-Candida and non-Aspergillus fungi infections were more frequent in the conventional-negative/sequencing-positive group (p-value = 0.031). We demonstrated the presence of rare human pathogens, such as Trichosporon asahii and Phycomyces blakesleeanus. In the 'Fungal infection' group and 'Fungal colonization' group, sequencing was faster than culturing (mean difference = 4.92 days, p-value < 0.001/ mean difference = 4.67, p-value <0.001). Compared to the conventional diagnostic methods including culture, nanopore amplicon sequencing showed a shorter turnaround time and a higher detection rate for uncommon fungal pathogens.

2.
Neurol Genet ; 10(2): e200141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38854973

RESUMO

Objectives: This study investigates atypical late-onset ataxia-telangiectasia (AT) cases in a Korean family, diagnosed via Nanopore long-read sequencing, diverging from the typical early childhood onset caused by biallelic pathogenic ATM variants. Methods: A 52-year-old Korean woman exhibiting dystonia and tremor, with a family history of similar symptoms in her older sister, underwent comprehensive tests including routine laboratory tests, neuropsychological assessments, and neuroimaging. Genetic analysis was conducted through targeted sequencing of 29 dystonia-associated genes and Nanopore long-read sequencing to assess the configuration of 2 ATM gene variants. Results: Routine blood tests and brain imaging studies returned normal results, except for elevated α-fetoprotein levels. Neurologic examination revealed dystonia in the face, hand, and trunk, along with cervical dystonia in the proband. Her sister exhibited similar symptoms without evident telangiectasia. Genetic testing revealed 2 heterozygous pathogenic ATM gene variants (p.Glu2014Ter and p.Glu2052Lys). Nanopore long-read sequencing confirmed these variants were in trans configuration, establishing a definite molecular diagnosis in the proband. Discussion: This report expands the known clinical spectrum of AT, highlighting a familial case of atypical AT. Moreover, it underscores the clinical utility of Nanopore long-read sequencing in phasing variant haplotypes, essential for diagnosing autosomal recessive disorders, especially beneficial for cases without parental samples.

3.
Eur J Hum Genet ; 32(5): 584-587, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308084

RESUMO

To date, approximately 50 short tandem repeat (STR) disorders have been identified; yet, clinical laboratories rarely conduct STR analysis on exomes. To assess its diagnostic value, we analyzed STRs in 6099 exomes from 2510 families with mostly suspected neurogenetic disorders. We employed ExpansionHunter and REViewer to detect pathogenic repeat expansions, confirming them using orthogonal methods. Genotype-phenotype correlations led to the diagnosis of thirteen individuals in seven previously undiagnosed families, identifying three autosomal dominant disorders: dentatorubral-pallidoluysian atrophy (n = 3), spinocerebellar ataxia type 7 (n = 2), and myotonic dystrophy type 1 (n = 2), resulting in a diagnostic gain of 0.28% (7/2510). Additionally, we found expanded ATXN1 alleles (≥39 repeats) with varying patterns of CAT interruptions in twelve individuals, accounting for approximately 0.19% in the Korean population. Our study underscores the importance of integrating STR analysis into exome sequencing pipeline, broadening the application of exome sequencing for STR assessments.


Assuntos
Sequenciamento do Exoma , Repetições de Microssatélites , Humanos , Sequenciamento do Exoma/métodos , Sequenciamento do Exoma/normas , Feminino , Masculino , Distrofia Miotônica/genética , Distrofia Miotônica/diagnóstico , Testes Genéticos/métodos , Testes Genéticos/normas , Ataxina-1/genética , Exoma , Adulto , Expansão das Repetições de DNA
4.
Sci Rep ; 14(1): 17801, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090138

RESUMO

Fever of unknown origin (FUO) remains a formidable diagnostic challenge in the field of medicine. Numerous studies suggest an association between FUO and genetic factors, including chromosomal abnormalities. Here, we report a female patient with a 4.5 Mb Xp microdeletion, who presented with recurrent FUO, bacteremia, colitis, and hematochezia. To elucidate the underlying pathogenic mechanism, we employed a comprehensive approach involving single cell RNA sequencing, T cell receptor sequencing, and flow cytometry to evaluate CD4 T cells. Analysis of peripheral blood mononuclear cells revealed augmented Th1, Th2, and Th17 cell populations, and elevated levels of proinflammatory cytokines in serum. Notably, the patient exhibited impaired Treg cell function, possibly related to deletion of genes encoding FOPX3 and WAS. Single cell analysis revealed specific expansion of cytotoxic CD4 T lymphocytes, characterized by upregulation of various signature genes associated with cytotoxicity. Moreover, interferon-stimulated genes were upregulated in the CD4 T effector memory cluster. Further genetic analysis confirmed maternal inheritance of the Xp microdeletion. The patient and her mother exhibited X chromosome-skewed inactivation, a potential protective mechanism against extensive X chromosome deletions; however, the mother exhibited complete skewing and the patient exhibited incomplete skewing (85:15), which may have contributed to emergence of immunological symptoms. In summary, this case report describes an exceptional instance of FUO stemming from an incompletely inactivated X chromosome microdeletion, thereby increasing our understanding of the genetics underpinning FUO.


Assuntos
Bacteriemia , Deleção Cromossômica , Cromossomos Humanos X , Febre de Causa Desconhecida , Humanos , Feminino , Bacteriemia/genética , Febre de Causa Desconhecida/genética , Cromossomos Humanos X/genética , Adulto
5.
Epilepsia Open ; 9(4): 1538-1549, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946282

RESUMO

OBJECTIVE: Epilepsy is a suitable target for gene panel sequencing because a considerable portion of epilepsy is now explained by genetic components, especially in syndromic cases. However, previous gene panel studies on epilepsy have mostly focused on pediatric patients. METHODS: We enrolled adult epilepsy patients meeting any of the following criteria: family history of epilepsy, seizure onset age ≤ 19 years, neuronal migration disorder, and seizure freedom not achieved by dual anti-seizure medications. We sequenced the exonic regions of 211 epilepsy genes in these patients. To confirm the pathogenicity of a novel MTOR truncating variant, we electroporated vectors with different MTOR variants into developing mouse brains. RESULTS: A total of 92 probands and 4 affected relatives were tested, and the proportion of intellectual disability (ID) and/or developmental disability (DD) was 21.7%. As a result, twelve probands (13.0%) had pathogenic or likely pathogenic variants in the following genes or regions: DEPDC5, 15q12-q13 duplication (n = 2), SLC6A1, SYNGAP1, EEF1A2, LGI1, MTOR, KCNQ2, MEF2C, and TSC1 (n = 1). We confirmed the functional impact of a novel truncating mutation in the MTOR gene (c.7570C > T, p.Gln2524Ter) that disrupted neuronal migration in a mouse model. The diagnostic yield was higher in patients with ID/DD or childhood-onset seizures. We also identified additional candidate variants in 20 patients that could be reassessed by further studies. SIGNIFICANCE: Our findings underscore the clinical utility of gene panel sequencing in adult epilepsy patients suspected of having genetic etiology, especially those with ID/DD or early-onset seizures. Gene panel sequencing could not only lead to genetic diagnosis in a substantial portion of adult epilepsy patients but also inform more precise therapeutic decisions based on their genetic background. PLAIN LANGUAGE SUMMARY: This study demonstrated the effectiveness of gene panel sequencing in adults with epilepsy, revealing pathogenic or likely pathogenic variants in 13.0% of patients. Higher diagnostic yields were observed in those with neurodevelopmental disorders or childhood-onset seizures. Additionally, we have shown that expanding genetic studies into adult patients would uncover new types of pathogenic variants for epilepsy, contributing to the advancement of precision medicine for individuals with epilepsy. In conclusion, our results highlight the practical value of employing gene panel sequencing in adult epilepsy patients, particularly when genetic etiology is clinically suspected.


Assuntos
Epilepsia , Humanos , Adulto , Epilepsia/genética , Masculino , Feminino , Camundongos , Animais , Serina-Treonina Quinases TOR/genética , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Mutação , Deficiência Intelectual/genética , Testes Genéticos
6.
Sci Rep ; 14(1): 16303, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009709

RESUMO

We evaluated the efficacy and safety of 1-year treatment with nilotinib (Tasigna®) in patients with autosomal dominant spinocerebellar ataxia (ADSCA) and the factors associated with responsiveness. From an institutional cohort, patients with ADSCA who completed a 1-year treatment with nilotinib (150-300 mg/day) were included. Ataxia severity was assessed using the Scale for the Rating and Assessment of Ataxia (SARA), scores at baseline and 1, 3, 6, and 12 months. A subject was categorized 'responsive' when the SARA score reduction at 12 M was > 0. Pretreatment serum proteomic analysis included subjects with the highest (n = 5) and lowest (n = 5) SARA score change at 12 months and five non-ataxia controls. Thirty-two subjects (18 [56.2%] females, median age 42 [30-49.5] years) were included. Although SARA score at 12 M did not significantly improve in overall population, 20 (62.5%) subjects were categorized as responsive. Serum proteomic analysis identified 4 differentially expressed proteins, leucine-rich alpha-2-glycoprotein (LRG1), vitamin-D binding protein (DBP), and C4b-binding protein (C4BP) beta and alpha chain, which are involved in the autophagy process. This preliminary data suggests that nilotinib might improve ataxia severity in some patients with ADSCA. Serum protein markers might be a clue to predict the response to nilotinib.Trial Registration Information: Effect of Nilotinib in Cerebellar Ataxia Patients (NCT03932669, date of submission 01/05/2019).


Assuntos
Pirimidinas , Ataxias Espinocerebelares , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Pirimidinas/uso terapêutico , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética , Resultado do Tratamento
7.
Neurol Genet ; 10(3): e200147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38779172

RESUMO

Background and Objectives: GGC repeat expansions in the NOTCH2NLC gene are associated with a broad spectrum of progressive neurologic disorders, notably, neuronal intranuclear inclusion disease (NIID). We aimed to investigate the population-wide prevalence and clinical manifestations of NOTCH2NLC-related disorders in Koreans. Methods: We conducted a study using 2 different cohorts from the Korean population. Patients with available brain MRI scans from Seoul National University Hospital (SNUH) were thoroughly reviewed, and NIID-suspected patients presenting the zigzag edging signs underwent genetic evaluation for NOTCH2NLC repeats by Cas9-mediated nanopore sequencing. In addition, we analyzed whole-genome sequencing data from 3,887 individuals in the Korea Biobank cohort to estimate the distribution of the repeat counts in Koreans and to identify putative patients with expanded alleles and neurologic phenotypes. Results: In the SNUH cohort, among 90 adult-onset leukoencephalopathy patients with unknown etiologies, we found 20 patients with zigzag edging signs. Except for 2 diagnosed with fragile X-associated tremor/ataxia syndrome and 2 with unavailable samples, all 16 patients (17.8%) were diagnosed with NIID (repeat range: 87-217). By analyzing the Korea Biobank cohort, we estimated the distribution of repeat counts and threshold (>64) for Koreans, identifying 6 potential patients with NIID. Furthermore, long-read sequencing enabled the elucidation of transmission and epigenetic patterns of NOTCH2NLC repeats within a family affected by pediatric-onset NIID. Discussion: This study presents the population-wide distribution of NOTCH2NLC repeats and the estimated prevalence of NIID in Koreans, providing valuable insights into the association between repeat counts and disease manifestations in diverse neurologic disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA