Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 30(15): 26027-26042, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236801

RESUMO

As a coherent diffraction imaging technique, ptychography provides high-spatial resolution beyond Rayleigh's criterion of the focusing optics, but it is also sensitively affected by the decoherence coming from the spatial and temporal variations in the experiment. Here we show that high-speed ptychographic data acquisition with short exposure can effectively reduce the impact from experimental variations. To reach a cumulative dose required for a given resolution, we further demonstrate that a continuous multi-pass scan via high-speed ptychography can achieve high-resolution imaging. This low-dose scan strategy is shown to be more dose-efficient, and has potential for radiation-sensitive sample studies and time-resolved imaging.

2.
Opt Express ; 23(21): 27990-7, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480457

RESUMO

We report on the characterization of a multilayer Laue lens (MLL) with large acceptance, made of a novel WSi2/Al bilayer system. Fabrication of multilayers with large deposition thickness is required to obtain MLL structures with sufficient apertures capable of accepting the full lateral coherence length of x-rays at typical nanofocusing beamlines. To date, the total deposition thickness has been limited by stress-buildup in the multilayer. We were able to grow WSi2/Al with low grown-in stress, and asses the degree of stress reduction. X-ray diffraction experiments were conducted at beamline 1-BM at the Advanced Photon Source. We used monochromatic x-rays with a photon energy of 12 keV and a bandwidth of ΔE/E=5.4·10(-4). The MLL was grown with parallel layer interfaces, and was designed to have a large focal length of 9.6 mm. The mounted lens was 2.7 mm in width. We found and quantified kinks and bending of sections of the MLL. Sections with bending were found to partly have a systematic progression in the interface angles. We observed kinking in some, but not all, areas. The measurements are compared with dynamic diffraction calculations made with Coupled Wave Theory. Data are plotted showing the diffraction efficiency as a function of the external tilting angle of the entire mounted lens. This way of plotting the data was found to provide an overview into the diffraction properties of the whole lens, and enabled the following layer tilt analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA