Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cell ; 75(5): 921-932.e6, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31303471

RESUMO

Fate-changing transcription factors (TFs) scan chromatin to initiate new genetic programs during cell differentiation and reprogramming. Yet the protein structure domains that allow TFs to target nucleosomal DNA remain unexplored. We screened diverse TFs for binding to nucleosomes containing motif-enriched sequences targeted by pioneer factors in vivo. FOXA1, OCT4, ASCL1/E12α, PU1, CEBPα, and ZELDA display a range of nucleosome binding affinities that correlate with their cell reprogramming potential. We further screened 593 full-length human TFs on protein microarrays against different nucleosome sequences, followed by confirmation in solution, to distinguish among factors that bound nucleosomes, such as the neuronal AP-2α/ß/γ, versus factors that only bound free DNA. Structural comparisons of DNA binding domains revealed that efficient nucleosome binders use short anchoring α helices to bind DNA, whereas weak nucleosome binders use unstructured regions and/or ß sheets. Thus, specific modes of DNA interaction allow nucleosome scanning that confers pioneer activity to transcription factors.


Assuntos
DNA/química , Nucleossomos/química , Fatores de Transcrição/química , Animais , DNA/metabolismo , Humanos , Camundongos , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/metabolismo
2.
Am J Hum Genet ; 103(6): 874-892, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30503521

RESUMO

The progressive loss of midbrain (MB) dopaminergic (DA) neurons defines the motor features of Parkinson disease (PD), and modulation of risk by common variants in PD has been well established through genome-wide association studies (GWASs). We acquired open chromatin signatures of purified embryonic mouse MB DA neurons because we anticipated that a fraction of PD-associated genetic variation might mediate the variants' effects within this neuronal population. Correlation with >2,300 putative enhancers assayed in mice revealed enrichment for MB cis-regulatory elements (CREs), and these data were reinforced by transgenic analyses of six additional sequences in zebrafish and mice. One CRE, within intron 4 of the familial PD gene SNCA, directed reporter expression in catecholaminergic neurons from transgenic mice and zebrafish. Sequencing of this CRE in 986 individuals with PD and 992 controls revealed two common variants associated with elevated PD risk. To assess potential mechanisms of action, we screened >16,000 proteins for DNA binding capacity and identified a subset whose binding is impacted by these enhancer variants. Additional genotyping across the SNCA locus identified a single PD-associated haplotype, containing the minor alleles of both of the aforementioned PD-risk variants. Our work posits a model for how common variation at SNCA might modulate PD risk and highlights the value of cell-context-dependent guided searches for functional non-coding variation.


Assuntos
Cromatina/genética , Neurônios Dopaminérgicos/patologia , Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Animais , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Íntrons/genética , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Gravidez , Peixe-Zebra
3.
Curr Opin Chem Biol ; 30: 21-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26599287

RESUMO

Protein microarray technology provides a versatile platform for characterization of hundreds to thousands of proteins in a parallel and high-throughput manner. Over the last decade, applications of functional protein microarrays in particular have flourished in studying protein function at a systems level and have led to the construction of networks and pathways describing these functions. Relevant areas of research include the detection of various binding properties of proteins, the study of enzyme-substrate relationships, the analysis of host-microbe interactions, and profiling antibody specificity. In addition, discovery of novel biomarkers in autoimmune diseases and cancers is emerging as a major clinical application of functional protein microarrays. In this review, we will summarize the recent advances of functional protein microarrays in both basic and clinical applications.


Assuntos
Análise Serial de Proteínas/métodos , Protocolos Clínicos , DNA/metabolismo , Humanos , Proteínas/metabolismo , RNA/metabolismo
4.
PLoS One ; 5(12): e14253, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21170380

RESUMO

BACKGROUND: Proteomic studies of formalin-fixed paraffin-embedded (FFPE) tissues are frustrated by the inability to extract proteins from archival tissue in a form suitable for analysis by 2-D gel electrophoresis or mass spectrometry. This inability arises from the difficulty of reversing formaldehyde-induced protein adducts and cross-links within FFPE tissues. We previously reported the use of elevated hydrostatic pressure as a method for efficient protein recovery from a hen egg-white lysozyme tissue surrogate, a model system developed to study formalin fixation and histochemical processing. PRINCIPAL FINDINGS: In this study, we demonstrate the utility of elevated hydrostatic pressure as a method for efficient protein recovery from FFPE mouse liver tissue and a complex multi-protein FFPE tissue surrogate comprised of hen egg-white lysozyme, bovine carbonic anhydrase, bovine ribonuclease A, bovine serum albumin, and equine myoglobin (55∶15∶15∶10∶5 wt%). Mass spectrometry of the FFPE tissue surrogates retrieved under elevated pressure showed that both the low and high-abundance proteins were identified with sequence coverage comparable to that of the surrogate mixture prior to formaldehyde treatment. In contrast, non-pressure-extracted tissue surrogate samples yielded few positive and many false peptide identifications. Studies with soluble formalin-treated bovine ribonuclease A demonstrated that pressure modestly inhibited the rate of reversal (hydrolysis) of formaldehyde-induced protein cross-links. Dynamic light scattering studies suggest that elevated hydrostatic pressure and heat facilitate the recovery of proteins free of formaldehyde adducts and cross-links by promoting protein unfolding and hydration with a concomitant reduction in the average size of the protein aggregates. CONCLUSIONS: These studies demonstrate that elevated hydrostatic pressure treatment is a promising approach for improving the recovery of proteins from FFPE tissues in a form suitable for proteomic analysis.


Assuntos
Inclusão em Parafina/métodos , Parafina/química , Proteínas/química , Fixação de Tecidos/métodos , Animais , Galinhas , Reagentes de Ligações Cruzadas/química , Clara de Ovo/química , Eletroforese em Gel Bidimensional , Fixadores/química , Formaldeído/química , Fígado/metabolismo , Espectrometria de Massas/métodos , Camundongos , Muramidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA