Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 165(3): 566-79, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27087445

RESUMO

Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is the C-terminal cleavage product of profibrillin, and we name it Asprosin. Asprosin is secreted by white adipose, circulates at nanomolar levels, and is recruited to the liver, where it activates the G protein-cAMP-PKA pathway, resulting in rapid glucose release into the circulation. Humans and mice with insulin resistance show pathologically elevated plasma asprosin, and its loss of function via immunologic or genetic means has a profound glucose- and insulin-lowering effect secondary to reduced hepatic glucose release. Asprosin represents a glucogenic protein hormone, and therapeutically targeting it may be beneficial in type II diabetes and metabolic syndrome.


Assuntos
Jejum/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Tecido Adiposo Branco/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/administração & dosagem , Ritmo Circadiano , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Jejum/sangue , Feminino , Retardo do Crescimento Fetal/metabolismo , Fibrilina-1 , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas dos Microfilamentos/sangue , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Dados de Sequência Molecular , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Hormônios Peptídicos/sangue , Hormônios Peptídicos/química , Hormônios Peptídicos/genética , Progéria/metabolismo , Proteínas Recombinantes/administração & dosagem , Alinhamento de Sequência
2.
Nature ; 593(7857): 147-151, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828301

RESUMO

Bile acids are lipid-emulsifying metabolites synthesized in hepatocytes and maintained in vivo through enterohepatic circulation between the liver and small intestine1. As detergents, bile acids can cause toxicity and inflammation in enterohepatic tissues2. Nuclear receptors maintain bile acid homeostasis in hepatocytes and enterocytes3, but it is unclear how mucosal immune cells tolerate high concentrations of bile acids in the small intestine lamina propria (siLP). CD4+ T effector (Teff) cells upregulate expression of the xenobiotic transporter MDR1 (encoded by Abcb1a) in the siLP to prevent bile acid toxicity and suppress Crohn's disease-like small bowel inflammation4. Here we identify the nuclear xenobiotic receptor CAR (encoded by Nr1i3) as a regulator of MDR1 expression in T cells that can safeguard against bile acid toxicity and inflammation in the mouse small intestine. Activation of CAR induced large-scale transcriptional reprogramming in Teff cells that infiltrated the siLP, but not the colon. CAR induced the expression of not only detoxifying enzymes and transporters in siLP Teff cells, as in hepatocytes, but also the key anti-inflammatory cytokine IL-10. Accordingly, CAR deficiency in T cells exacerbated bile acid-driven ileitis in T cell-reconstituted Rag1-/- or Rag2-/- mice, whereas pharmacological activation of CAR suppressed it. These data suggest that CAR acts locally in T cells that infiltrate the small intestine to detoxify bile acids and resolve inflammation. Activation of this program offers an unexpected strategy to treat small bowel Crohn's disease and defines lymphocyte sub-specialization in the small intestine.


Assuntos
Ácidos e Sais Biliares/metabolismo , Regulação da Expressão Gênica , Intestino Delgado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Linfócitos T/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Receptor Constitutivo de Androstano , Doença de Crohn/metabolismo , Feminino , Ileíte/metabolismo , Inflamação/metabolismo , Interleucina-10/biossíntese , Interleucina-10/genética , Intestino Delgado/citologia , Camundongos
3.
Proc Natl Acad Sci U S A ; 119(43): e2205350119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251994

RESUMO

Androgen receptor (AR) signaling is crucial for driving prostate cancer (PCa), the most diagnosed and the second leading cause of death in male patients with cancer in the United States. Androgen deprivation therapy is initially effective in most instances of AR-positive advanced or metastatic PCa. However, patients inevitably develop lethal castration-resistant PCa (CRPC), which is also resistant to the next-generation AR signaling inhibitors. Most CRPCs maintain AR expression, and blocking AR signaling remains a main therapeutic approach. GATA2 is a pioneer transcription factor emerging as a key therapeutic target for PCa because it promotes AR expression and activation. While directly inhibiting GATA2 transcriptional activity remains challenging, enhancing GATA2 degradation is a plausible therapeutic strategy. How GATA2 protein stability is regulated in PCa remains unknown. Here, we show that constitutive photomorphogenesis protein 1 (COP1), an E3 ubiquitin ligase, drives GATA2 ubiquitination at K419/K424 for degradation. GATA2 lacks a conserved [D/E](x)xxVP[D/E] degron but uses alternate BR1/BR2 motifs to bind COP1. By promoting GATA2 degradation, COP1 inhibits AR expression and activation and represses PCa cell and xenograft growth and castration resistance. Accordingly, GATA2 overexpression or COP1 mutations that disrupt COP1-GATA2 binding block COP1 tumor-suppressing activities. We conclude that GATA2 is a major COP1 substrate in PCa and that COP1 promotion of GATA2 degradation is a direct mechanism for regulating AR expression and activation, PCa growth, and castration resistance.


Assuntos
Fator de Transcrição GATA2 , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Ubiquitina-Proteína Ligases , Humanos , Masculino , Antagonistas de Androgênios/uso terapêutico , Androgênios , Linhagem Celular Tumoral , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(13): e2023784119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35333654

RESUMO

Neural stem cells, the source of newborn neurons in the adult hippocampus, are intimately involved in learning and memory, mood, and stress response. Despite considerable progress in understanding the biology of neural stem cells and neurogenesis, regulating the neural stem cell population precisely has remained elusive because we have lacked the specific targets to stimulate their proliferation and neurogenesis. The orphan nuclear receptor TLX/NR2E1 governs neural stem and progenitor cell self-renewal and proliferation, but the precise mechanism by which it accomplishes this is not well understood because its endogenous ligand is not known. Here, we identify oleic acid (18:1ω9 monounsaturated fatty acid) as such a ligand. We first show that oleic acid is critical for neural stem cell survival. Next, we demonstrate that it binds to TLX to convert it from a transcriptional repressor to a transcriptional activator of cell-cycle and neurogenesis genes, which in turn increases neural stem cell mitotic activity and drives hippocampal neurogenesis in mice. Interestingly, oleic acid-activated TLX strongly up-regulates cell cycle genes while only modestly up-regulating neurogenic genes. We propose a model in which sufficient quantities of this endogenous ligand must bind to TLX to trigger the switch to proliferation and drive the progeny toward neuronal lineage. Oleic acid thus serves as a metabolic regulator of TLX activity that can be used to selectively target neural stem cells, paving the way for future therapeutic manipulations to counteract pathogenic impairments of neurogenesis.


Assuntos
Hipocampo , Neurogênese , Ácido Oleico , Receptores Citoplasmáticos e Nucleares , Animais , Proliferação de Células , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Ligantes , Camundongos , Neurogênese/fisiologia , Ácido Oleico/metabolismo , Receptores Nucleares Órfãos , Receptores Citoplasmáticos e Nucleares/metabolismo
5.
J Hepatol ; 80(2): 282-292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37890720

RESUMO

BACKGROUND & AIMS: Chronic circadian dysfunction increases the risk of non-alcoholic fatty liver disease (NAFLD)-related hepatocellular carcinoma (HCC), but the underlying mechanisms and direct relevance to human HCC have not been established. In this study, we aimed to determine whether chronic circadian dysregulation can drive NAFLD-related carcinogenesis from human hepatocytes and human HCC progression. METHODS: Chronic jet lag of mice with humanized livers induces spontaneous NAFLD-related HCCs from human hepatocytes. The clinical relevance of this model was analysed by biomarker, pathological/histological, genetic, RNA sequencing, metabolomic, and integrated bioinformatic analyses. RESULTS: Circadian dysfunction induces glucose intolerance, NAFLD-associated human HCCs, and human HCC metastasis independent of diet in a humanized mouse model. The deregulated transcriptomes in necrotic-inflammatory humanized livers and HCCs bear a striking resemblance to those of human non-alcoholic steatohepatitis (NASH), cirrhosis, and HCC. Stable circadian entrainment of hosts rhythmically paces NASH and HCC transcriptomes to decrease HCC incidence and prevent HCC metastasis. Circadian disruption directly reprogrammes NASH and HCC transcriptomes to drive a rapid progression from hepatocarcinogenesis to HCC metastasis. Human hepatocyte and tumour transcripts are clearly distinguishable from mouse transcripts in non-parenchymal cells and tumour stroma, and display dynamic changes in metabolism, inflammation, angiogenesis, and oncogenic signalling in NASH, progressing to hepatocyte malignant transformation and immunosuppressive tumour stroma in HCCs. Metabolomic analysis defines specific bile acids as prognostic biomarkers that change dynamically during hepatocarcinogenesis and in response to circadian disruption at all disease stages. CONCLUSION: Chronic circadian dysfunction is independently carcinogenic to human hepatocytes. Mice with humanized livers provide a powerful preclinical model for studying the impact of the necrotic-inflammatory liver environment and neuroendocrine circadian dysfunction on hepatocarcinogenesis and anti-HCC therapy. IMPACT AND IMPLICATIONS: Human epidemiological studies have linked chronic circadian dysfunction to increased hepatocellular carcinoma (HCC) risk, but direct evidence that circadian dysfunction is a human carcinogen has not been established. Here we show that circadian dysfunction induces non-alcoholic steatohepatitis (NASH)-related carcinogenesis from human hepatocytes in a murine humanized liver model, following the same molecular and pathologic pathways observed in human patients. The gene expression signatures of humanized HCC transcriptomes from circadian-disrupted mice closely match those of human HCC with the poorest prognostic outcomes, while those from stably circadian entrained mice match those from human HCC with the best prognostic outcomes. Our studies establish a new model for defining the mechanism of NASH-related HCC and highlight the importance of circadian biology in HCC prevention and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Fígado/patologia , Modelos Animais de Doenças , Carcinogênese/metabolismo , Carcinógenos/metabolismo
6.
Immunity ; 43(1): 80-91, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200012

RESUMO

The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming.


Assuntos
Cisteína Endopeptidases/biossíntese , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Macrófagos/metabolismo , Receptores de Estrogênio/genética , Receptor 4 Toll-Like/imunologia , Acetilação , Animais , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Cisteína Endopeptidases/genética , Ativação Enzimática/genética , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , NAD/metabolismo , Fosforilação Oxidativa , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Choque Séptico/imunologia , Transdução de Sinais , Sirtuína 1/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitinação , Receptor ERRalfa Relacionado ao Estrogênio
7.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526687

RESUMO

Vertical sleeve gastrectomy (VSG) is one of the most effective and durable therapies for morbid obesity and its related complications. Although bile acids (BAs) have been implicated as downstream mediators of VSG, the specific mechanisms through which BA changes contribute to the metabolic effects of VSG remain poorly understood. Here, we confirm that high fat diet-fed global farnesoid X receptor (Fxr) knockout mice are resistant to the beneficial metabolic effects of VSG. However, the beneficial effects of VSG were retained in high fat diet-fed intestine- or liver-specific Fxr knockouts, and VSG did not result in Fxr activation in the liver or intestine of control mice. Instead, VSG decreased expression of positive hepatic Fxr target genes, including the bile salt export pump (Bsep) that delivers BAs to the biliary pathway. This reduced small intestine BA levels in mice, leading to lower intestinal fat absorption. These findings were verified in sterol 27-hydroxylase (Cyp27a1) knockout mice, which exhibited low intestinal BAs and fat absorption and did not show metabolic improvements following VSG. In addition, restoring small intestinal BA levels by dietary supplementation with taurocholic acid (TCA) partially blocked the beneficial effects of VSG. Altogether, these findings suggest that reductions in intestinal BAs and lipid absorption contribute to the metabolic benefits of VSG.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Gastrectomia/métodos , Obesidade Mórbida/cirurgia , Receptores Citoplasmáticos e Nucleares/genética , Animais , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Redução de Peso/genética
8.
Nat Immunol ; 12(8): 742-51, 2011 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-21725320

RESUMO

The orphan nuclear receptor SHP (small heterodimer partner) is a transcriptional corepressor that regulates hepatic metabolic pathways. Here we identified a role for SHP as an intrinsic negative regulator of Toll-like receptor (TLR)-triggered inflammatory responses. SHP-deficient mice were more susceptible to endotoxin-induced sepsis. SHP had dual regulatory functions in a canonical transcription factor NF-κB signaling pathway, acting as both a repressor of transactivation of the NF-κB subunit p65 and an inhibitor of polyubiquitination of the adaptor TRAF6. SHP-mediated inhibition of signaling via the TLR was mimicked by macrophage-stimulating protein (MSP), a strong inducer of SHP expression, via an AMP-activated protein kinase-dependent signaling pathway. Our data identify a previously unrecognized role for SHP in the regulation of TLR signaling.


Assuntos
NF-kappa B/imunologia , Receptores Citoplasmáticos e Nucleares/imunologia , Sepse/imunologia , Receptores Toll-Like/imunologia , Proteínas Quinases Ativadas por AMP/imunologia , Animais , Imunoprecipitação da Cromatina , Feminino , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/imunologia , Ubiquitinação/imunologia
9.
Proc Natl Acad Sci U S A ; 117(4): 2076-2083, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31924743

RESUMO

Inactivating mutations in the copper transporter Atp7b result in Wilson's disease. The Atp7b-/- mouse develops hallmarks of Wilson's disease. The activity of several nuclear receptors decreased in Atp7b-/- mice, and nuclear receptors are critical for maintaining metabolic homeostasis. Therefore, we anticipated that Atp7b-/- mice would exhibit altered progression of diet-induced obesity, fatty liver, and insulin resistance. Following 10 wk on a chow or Western-type diet (40% kcal fat), parameters of glucose and lipid homeostasis were measured. Hepatic metabolites were measured by liquid chromatography-mass spectrometry and correlated with transcriptomic data. Atp7b-/- mice fed a chow diet presented with blunted body-weight gain over time, had lower fat mass, and were more glucose tolerant than wild type (WT) littermate controls. On the Western diet, Atp7b-/- mice exhibited reduced body weight, adiposity, and hepatic steatosis compared with WT controls. Atp7b-/- mice fed either diet were more insulin sensitive than WT controls; however, fasted Atp7b-/- mice exhibited hypoglycemia after administration of insulin due to an impaired glucose counterregulatory response, as evidenced by reduced hepatic glucose production. Coupling gene expression with metabolomic analyses, we observed striking changes in hepatic metabolic profiles in Atp7b-/- mice, including increases in glycolytic intermediates and components of the tricarboxylic acid cycle. In addition, the active phosphorylated form of AMP kinase was significantly increased in Atp7b-/- mice relative to WT controls. Alterations in hepatic metabolic profiles and nuclear receptor signaling were associated with improved glucose tolerance and insulin sensitivity as well as with impaired fasting glucose production in Atp7b-/- mice.


Assuntos
ATPases Transportadoras de Cobre/metabolismo , Degeneração Hepatolenticular/enzimologia , Animais , ATPases Transportadoras de Cobre/genética , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Humanos , Resistência à Insulina , Fígado/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Biochem Biophys Res Commun ; 534: 864-870, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168190

RESUMO

Bile acids have recently emerged as key metabolic hormones with beneficial impacts in multiple metabolic diseases. We previously discovered that hepatic bile acid overload distally modulates glucose and fatty acid metabolism in adipose tissues to exert anti-obesity effects. However, the detailed mechanisms that explain the salutary effects of serum bile acid elevation remain unclear. Here, proteomic profiling identified a new hepatokine, Orosomucoid (ORM) that governs liver-adipose tissue crosstalk. Hepatic ORMs were highly induced by both genetic and dietary bile acid overload. To address the direct metabolic effects of ORM, purified ORM proteins were administered during adipogenic differentiation of 3T3-L1 cells and mouse stromal vascular fibroblasts. ORM suppressed adipocyte differentiation and strongly inhibited gene expression of adipogenic transcription factors such as C/EBPß, KLF5, C/EBPα, and PPARγ. Taken together, our data clearly suggest that bile acid-induced ORM secretion from the liver blocks adipocyte differentiation, potentially linked to anti-obesity effect of bile acids.


Assuntos
Adipogenia , Ácidos e Sais Biliares/metabolismo , Orosomucoide/metabolismo , Células 3T3-L1 , Animais , Bovinos , Fibroblastos/metabolismo , Lipogênese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Orosomucoide/análise , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Proteômica
11.
Hepatology ; 71(4): 1453-1466, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31381163

RESUMO

BACKGROUND AND AIMS: Hepatic endoplasmic reticulum (ER) stress, whether triggered by intrinsic or extrinsic factors, can be resolved by the unfolded protein response (UPR). Sustained UPR activation leads to cell death and inflammatory response and contributes to liver disease progression. Hepatic tissue macrophages are key players in orchestrating liver inflammation, and ER stress can enhance macrophage activation. However, it is not well defined how the interplay between ER stress and inflammation is regulated during hepatic stress response. APPROACH AND RESULTS: Here we demonstrate that vitamin D receptor (VDR) activation mitigates hepatic ER stress response, whereas VDR knockout mice undergo persistent UPR activation and apoptosis in response to chemical ER stress inducer. Moreover, VDR deficiency promotes hepatic macrophage infiltration and increases gene expression and systematic levels of proinflammatory cytokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor α. VDR expression is induced in hepatic macrophages by ER stress, and VDR plays a dual regulatory role in macrophages by protecting against ER stress and promoting anti-inflammatory polarization. Co-culture with VDR-activated bone marrow-derived macrophages suppresses UPR target genes in primary hepatocytes treated with ER stress inducers. Thus, the immunomodulatory functions of VDR in macrophages are critical in hepatic ER stress resolution in mice. CONCLUSIONS: VDR signaling in macrophages regulates a shift between proinflammatory and anti-inflammatory activation during ER stress-induced inflammation to promote hepatic ER stress resolution.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Células de Kupffer/metabolismo , Fígado/metabolismo , Receptores de Calcitriol/fisiologia , Animais , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Hepatite/imunologia , Hepatite/metabolismo , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/genética , Resposta a Proteínas não Dobradas
12.
Hepatology ; 71(5): 1559-1574, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31506976

RESUMO

BACKGROUND AND AIMS: Obesity-induced chronic inflammation is a key component in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and insulin resistance. Increased secretion of proinflammatory cytokines by macrophages in metabolic tissues promotes disease progression. In the diet-induced obesity (DIO) mouse model, activation of liver resident macrophages, or Kupffer cells (KCs), drives inflammatory responses, which recruits circulating macrophages and promotes fatty liver development, and ultimately contributes to impaired hepatic insulin sensitivity. Hepatic macrophages express the highest level of vitamin D receptors (VDRs) among nonparenchymal cells, whereas VDR expression is very low in hepatocytes. VDR activation exerts anti-inflammatory effects in immune cells. APPROACH AND RESULTS: Here we found that VDR activation exhibits strong anti-inflammatory effects in mouse hepatic macrophages, including those isolated from DIO livers, and mice with genetic loss of Vdr developed spontaneous hepatic inflammation at 6 months of age. Under the chronic inflammation conditions of the DIO model, VDR activation by the vitamin D analog calcipotriol reduced liver inflammation and hepatic steatosis, significantly improving insulin sensitivity. The hyperinsulinemic euglycemic clamp revealed that VDR activation greatly increased the glucose infusion rate, while hepatic glucose production was remarkably decreased. Glucose uptake in muscle and adipose did not show similar effects, suggesting that improved hepatic insulin sensitivity is the primary contributor to the beneficial effects of VDR activation. Finally, specifically ablating liver macrophages by treatment with clodronate liposomes largely abolished the beneficial metabolic effects of calcipotriol, confirming that VDR activation in liver macrophages is required for the antidiabetic effect. CONCLUSIONS: Activation of liver macrophage VDRs by vitamin D ligands ameliorates liver inflammation, steatosis and insulin resistance. Our results suggest therapeutic paradigms for treatment of NAFLD and type 2 diabetes mellitus.


Assuntos
Hepatite/metabolismo , Resistência à Insulina , Células de Kupffer/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de Calcitriol/fisiologia , Animais , Modelos Animais de Doenças , Hepatite/etiologia , Inflamação/etiologia , Inflamação/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/imunologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/genética , Vitamina D/farmacologia
13.
Hepatology ; 71(3): 1055-1069, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31355949

RESUMO

BACKGROUND AND AIMS: Liver receptor homolog-1 (LRH-1; NR5A2) is a nuclear receptor that regulates metabolic homeostasis in the liver. Previous studies identified phosphatidylcholines as potential endogenous agonist ligands for LRH-1. In the liver, distinct subsets of phosphatidylcholine species are generated by two different pathways: choline addition to phosphatidic acid through the Kennedy pathway and trimethylation of phosphatidylethanolamine through phosphatidylethanolamine N-methyl transferase (PEMT). APPROACH AND RESULTS: Here, we report that a PEMT-LRH-1 pathway specifically couples methyl metabolism and mitochondrial activities in hepatocytes. We show that the loss of Lrh-1 reduces mitochondrial number, basal respiration, beta-oxidation, and adenosine triphosphate production in hepatocytes and decreases expression of mitochondrial biogenesis and beta-oxidation genes. In contrast, activation of LRH-1 by its phosphatidylcholine agonists exerts opposite effects. While disruption of the Kennedy pathway does not affect the LRH-1-mediated regulation of mitochondrial activities, genetic or pharmaceutical inhibition of the PEMT pathway recapitulates the effects of Lrh-1 knockdown on mitochondria. Furthermore, we show that S-adenosyl methionine, a cofactor required for PEMT, is sufficient to induce Lrh-1 transactivation and consequently mitochondrial biogenesis. CONCLUSIONS: A PEMT-LRH-1 axis regulates mitochondrial biogenesis and beta-oxidation in hepatocytes.


Assuntos
Hepatócitos/metabolismo , Mitocôndrias/fisiologia , Fosfatidiletanolamina N-Metiltransferase/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Células Hep G2 , Humanos , Masculino , Camundongos , Oxirredução , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacologia
14.
FASEB J ; 34(6): 8265-8282, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32294302

RESUMO

Dynamin-Related-Protein 1 (DRP1) critically regulates mitochondrial and peroxisomal fission in multicellular organisms. However, the impact of DRP1 on other organelles, especially its direct influence on ER functions remains largely unclear. Here, we report that DRP1 translocates to endoplasmic reticulum (ER) in response to ß-adrenergic stimulation. To further investigate the function of DRP1 on ER-lipid droplet (LD) dynamics and the metabolic subsequences, we generated an adipose tissue-specific DRP1 knockout model (Adipo-Drp1flx/flx ). We found that the LDs in adipose tissues of Adipo-Drp1flx/flx mice exhibited more unilocular morphology with larger sizes, and formed less multilocular structures upon cold exposure. Mechanistically, we discovered that abnormal LD morphology occurs because newly generated micro-LDs fail to dissociate from the ER due to DRP1 ablation. Conversely, the ER retention of LDs can be rescued by the overexpressed DRP1 in the adipocytes. The alteration of LD dynamics, combined with abnormal mitochondrial and autophagy functions in adipose tissue, ultimately lead to abnormalities in lipid metabolism in Adipo-Drp1flx/flx mice.


Assuntos
Tecido Adiposo/metabolismo , Dinaminas/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Células 3T3 , Adipócitos/metabolismo , Animais , Autofagia/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo
15.
J Hepatol ; 72(6): 1122-1131, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32001325

RESUMO

BACKGROUND & AIMS: Cholestasis comprises a spectrum of liver diseases characterized by the accumulation of bile acids. Bile acids and activation of the farnesoid X receptor (FXR) can inhibit autophagy, a cellular self-digestion process necessary for cellular homeostasis and regeneration. In mice, autophagy appears to be impaired in cholestasis and induction of autophagy may reduce liver injury. METHODS: Herein, we explored autophagy in human cholestasis in vivo and investigated the underlying molecular mechanisms in vitro. FXR chromatin immunoprecipitation-sequencing and qPCR were performed in combination with luciferase promoter studies to identify functional FXR binding targets in a human cholestatic liver sample. RESULTS: Autophagic processing appeared to be impaired in patients with cholestasis and in individuals treated with the FXR ligand obeticholic acid (OCA). In vitro, chenodeoxycholic acid and OCA inhibited autophagy at the level of autophagosome to lysosome fusion in an FXR-dependent manner. Rubicon, which inhibits autophago-lysosomal maturation, was identified as a direct FXR target that is induced in cholestasis and by FXR-agonistic bile acids. Genetic inhibition of Rubicon reversed the bile acid-induced impairment of autophagic flux. In contrast to OCA, ursodeoxycholic acid (UDCA), which is a non-FXR-agonistic bile acid, induced autophagolysosome formation independently of FXR, enhanced autophagic flux and was associated with reduced Rubicon levels. CONCLUSION: In models of human cholestasis, autophagic processing is impaired in an FXR-dependent manner, partly resulting from the induction of Rubicon. UDCA is a potent inducer of hepatic autophagy. Manipulating autophagy and Rubicon may represent a novel treatment concept for cholestatic liver diseases. LAY SUMMARY: Autophagy, a cellular self-cleansing process, is impaired in various forms of human cholestasis. Bile acids, which accumulate in cholestatic liver disease, induce Rubicon, a protein that inhibits proper execution of autophagy. Ursodeoxycholic acid, which is the first-line treatment option for many cholestatic liver diseases, induces hepatic autophagy along with reducing Rubicon.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/genética , Colestase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/genética , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/genética , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/metabolismo , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/uso terapêutico , Colestase/tratamento farmacológico , Citotoxinas , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Estudos Retrospectivos , Transfecção , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/farmacologia
16.
J Pediatr Gastroenterol Nutr ; 70(6): e111-e113, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32443034

RESUMO

Pathogenic sequence variants in the nuclear bile acid receptor FXR, encoded by NR1H4, have been reported in a small number of children with low-γ-glutamyl transferase (GGT) cholestasis progressing to liver failure. We describe 3 additional children from 2 unrelated families with cholestasis and liver failure because of pathologic variants in NR1H4. One patient underwent liver transplantation and has had good clinical outcomes in 6 years of follow-up. Although that patient has biochemical evidence of increased bile acid synthetic activity, he has not experienced post-transplant diarrhea or allograft steatosis, as has been reported among other transplanted patients.


Assuntos
Colestase Intra-Hepática , Colestase , Falência Hepática , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Criança , Colestase Intra-Hepática/genética , Humanos , Fígado , Masculino , Mutação
17.
Nature ; 516(7529): 112-5, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25383539

RESUMO

Autophagy is an evolutionarily conserved catabolic process that recycles nutrients upon starvation and maintains cellular energy homeostasis. Its acute regulation by nutrient-sensing signalling pathways is well described, but its longer-term transcriptional regulation is not. The nuclear receptors peroxisome proliferator-activated receptor-α (PPARα) and farnesoid X receptor (FXR) are activated in the fasted and fed liver, respectively. Here we show that both PPARα and FXR regulate hepatic autophagy in mice. Pharmacological activation of PPARα reverses the normal suppression of autophagy in the fed state, inducing autophagic lipid degradation, or lipophagy. This response is lost in PPARα knockout (Ppara(-/-), also known as Nr1c1(-/-)) mice, which are partially defective in the induction of autophagy by fasting. Pharmacological activation of the bile acid receptor FXR strongly suppresses the induction of autophagy in the fasting state, and this response is absent in FXR knockout (Fxr(-/-), also known as Nr1h4(-/-)) mice, which show a partial defect in suppression of hepatic autophagy in the fed state. PPARα and FXR compete for binding to shared sites in autophagic gene promoters, with opposite transcriptional outputs. These results reveal complementary, interlocking mechanisms for regulation of autophagy by nutrient status.


Assuntos
Autofagia/fisiologia , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Autofagia/genética , Linhagem Celular , Células Cultivadas , Jejum/fisiologia , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Fígado/citologia , Fígado/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , PPAR alfa , Receptores Citoplasmáticos e Nucleares/genética
18.
Gastroenterology ; 155(6): 1967-1970.e6, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30170115

RESUMO

BACKGROUND & AIMS: Despite advances in gene editing technologies, generation of tissue-specific knockout mice is time-consuming. We used CRISPR/Cas9-mediated genome editing to disrupt genes in livers of adult mice in just a few months, which we refer to as somatic liver knockouts. METHODS: In this system, Fah-/- mice are given hydrodynamic tail vein injections of plasmids carrying CRISPR/Cas9 designed to excise exons in Hpd; the Hpd-edited hepatocytes have a survival advantage in these mice. Plasmids that target Hpd and a separate gene of interest can therefore be used to rapidly generate mice with liver-specific deletion of nearly any gene product. RESULTS: We used this system to create mice with liver-specific knockout of argininosuccinate lyase, which develop hyperammonemia, observed in humans with mutations in this gene. We also created mice with liver-specific knockout of ATP binding cassette subfamily B member 11, which encodes the bile salt export pump. We found that these mice have a biochemical phenotype similar to that of Abcb11-/- mice. We then used this system to knock out expression of 5 different enzymes involved in drug metabolism within the same mouse. CONCLUSIONS: This approach might be used to develop new models of liver diseases and study liver functions of genes that are required during development.


Assuntos
Argininossuccinato Liase/genética , Proteína 9 Associada à CRISPR/administração & dosagem , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Fígado/enzimologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Modelos Animais de Doenças , Hepatócitos/enzimologia , Hepatócitos/fisiologia , Camundongos , Camundongos Knockout , Oxirredutases/genética , Fenótipo , Plasmídeos/genética
19.
Hepatology ; 66(2): 498-509, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28378930

RESUMO

The nuclear receptors farnesoid X receptor (FXR; NR1H4) and small heterodimer partner (SHP; NR0B2) play crucial roles in bile acid homeostasis. Global double knockout of FXR and SHP signaling (DKO) causes severe cholestasis and liver injury at early ages. Here, we report an unexpected beneficial impact on glucose and fatty acid metabolism in aged DKO mice, which show suppressed body weight gain and adiposity when maintained on normal chow. This phenotype was not observed in single Fxr or Shp knockouts. Liver-specific Fxr/Shp double knockout mice fully phenocopied the DKO mice, with lower hepatic triglyceride accumulation, improved glucose/insulin tolerance, and accelerated fatty acid use. In both DKO and liver-specific Fxr/Shp double knockout livers, these metabolic phenotypes were associated with altered expression of fatty acid metabolism and autophagy-machinery genes. Loss of the hepatic FXR/SHP axis reprogrammed white and brown adipose tissue gene expression to boost fatty acid usage. CONCLUSION: Combined deletion of the hepatic FXR/SHP axis improves glucose/fatty acid homeostasis in aged mice, reversing the aging phenotype of body weight gain, increased adiposity, and glucose/insulin tolerance, suggesting a central role of this axis in whole-body energy homeostasis. (Hepatology 2017;66:498-509).


Assuntos
Ácidos Graxos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Homeostase/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Receptores Citoplasmáticos e Nucleares/genética , Envelhecimento/genética , Análise de Variância , Animais , Autofagia/genética , Células Cultivadas , Modelos Animais de Doenças , Glucose/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória
20.
Hepatology ; 65(1): 189-201, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27774647

RESUMO

Cardiac dysfunction in patients with liver cirrhosis is strongly associated with increased serum bile acid concentrations. Here we show that excess bile acids decrease fatty acid oxidation in cardiomyocytes and can cause heart dysfunction, a cardiac syndrome that we term cholecardia. Farnesoid X receptor; Small Heterodimer Partner double knockout mice, a model for bile acid overload, display cardiac hypertrophy, bradycardia, and exercise intolerance. In addition, double knockout mice exhibit an impaired cardiac response to catecholamine challenge. Consistent with this decreased cardiac function, we show that elevated serum bile acids reduce cardiac fatty acid oxidation both in vivo and ex vivo. We find that increased bile acid levels suppress expression of proliferator-activated receptor-γ coactivator 1α, a key regulator of fatty acid metabolism, and that proliferator-activated receptor-γ coactivator 1α overexpression in cardiac cells was able to rescue the bile acid-mediated reduction in fatty acid oxidation genes. Importantly, intestinal bile acid sequestration with cholestyramine was sufficient to reverse the observed heart dysfunction in the double knockout mice. CONCLUSIONS: Decreased proliferator-activated receptor-γ coactivator 1α expression contributes to the metabolic dysfunction in cholecardia so that reducing serum bile acid concentrations may be beneficial against the metabolic and pathological changes in the heart. (Hepatology 2017;65:189-201).


Assuntos
Ácidos e Sais Biliares/fisiologia , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Animais , Ácidos e Sais Biliares/sangue , Cardiomiopatias/sangue , Cardiomiopatias/fisiopatologia , Ácidos Graxos/metabolismo , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA