Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 138(16): 3409-20, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21752930

RESUMO

In plants, gametes, along with accessory cells, are formed by the haploid gametophytes through a series of mitotic divisions, cell specification and differentiation events. How the cells in the female gametophyte of flowering plants differentiate into gametes (the egg and central cell) and accessory cells remains largely unknown. In a screen for mutations that affect egg cell differentiation in Arabidopsis, we identified the wyrd (wyr) mutant, which produces additional egg cells at the expense of the accessory synergids. WYR not only restricts gametic fate in the egg apparatus, but is also necessary for central cell differentiation. In addition, wyr mutants impair mitotic divisions in the male gametophyte and endosperm, and have a parental effect on embryo cytokinesis, consistent with a function of WYR in cell cycle regulation. WYR is upregulated in gametic cells and encodes a putative plant ortholog of the inner centromere protein (INCENP), which is implicated in the control of chromosome segregation and cytokinesis in yeast and animals. Our data reveal a novel developmental function of the conserved cell cycle-associated INCENP protein in plant reproduction, in particular in the regulation of egg and central cell fate and differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Óvulo Vegetal/citologia , Óvulo Vegetal/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Mitose , Dados de Sequência Molecular , Mutação , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Filogenia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
2.
PLoS Genet ; 6(6): e1000988, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20585548

RESUMO

The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell cycle regulator, controls cell proliferation, differentiation, and regulation of a subset of Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the male and female gametophytes, as well as cell fate establishment in the male gametophyte. Here we demonstrate that RBR is also essential for cell fate determination in the female gametophyte, as revealed by loss of cell-specific marker expression in all the gametophytic cells that lack RBR. Maintenance of genome integrity also requires RBR, because diploid plants heterozygous for rbr (rbr/RBR) produce an abnormal portion of triploid offspring, likely due to gametic genome duplication. While the sporophyte of the diploid mutant plants phenocopied wild type due to the haplosufficiency of RBR, genetic analysis of tetraploid plants triplex for rbr (rbr/rbr/rbr/RBR) revealed that RBR has a dosage-dependent pleiotropic effect on sporophytic development, trichome differentiation, and regulation of PRC2 subunit genes CURLY LEAF (CLF) and VERNALIZATION 2 (VRN2), and MET1 in leaves. There were, however, no obvious cell cycle and cell proliferation defects in these plant tissues, suggesting that a single functional RBR copy in tetraploids is capable of maintaining normal cell division but is not sufficient for distinct differentiation and developmental processes. Conversely, in leaves of mutants in sporophytic PRC2 subunits, trichome differentiation was also affected and expression of RBR and MET1 was reduced, providing evidence for a RBR-PRC2-MET1 regulatory feedback loop involved in sporophyte development. Together, dosage-sensitive RBR function and its genetic interaction with PRC2 genes and MET1 must have been recruited during plant evolution to control distinct generation-specific cell fate, differentiation, and development.


Assuntos
Arabidopsis/genética , Epigênese Genética , Dosagem de Genes , Retinoblastoma/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Diferenciação Celular , Linhagem da Célula , Genoma de Planta , Células Germinativas Vegetais/metabolismo , Mutação , Ploidias
3.
PLoS Genet ; 4(11): e1000257, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19008940

RESUMO

At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting "instability elements," and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF -- a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Instabilidade Genômica , Mutação , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismo , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos , Animais , Ataxina-7 , Sítios de Ligação , Fator de Ligação a CCCTC , Metilação de DNA , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/genética
4.
BMJ Open ; 11(11): e049568, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732478

RESUMO

INTRODUCTION: Robust randomised trial data have shown that routine preoperative (pre-op) testing for cataract surgery patients is inappropriate. While guidelines have discouraged testing since 2002, cataract pre-op testing rates have remained unchanged since the 1990s. Given the challenges of reducing low-value care despite strong consensus around the evidence, innovative approaches are needed to promote high-value care. This trial evaluates the impact of an interdisciplinary electronic health record (EHR) intervention that is informed by behavioural economic theory. METHODS AND ANALYSIS: This pragmatic randomised trial is being conducted at UCLA Health between June 2021 and June 2022 with a 12-month follow-up period. We are randomising all UCLA Health physicians who perform pre-op visits during the study period to one of the three nudge arms or usual care. These three nudge alerts address (1) patient harm, (2) increased out-of-pocket costs for patients and (3) psychological harm to the patients related to pre-op testing. The nudges are triggered when a physician starts to order a pre-op test. We hypothesise that receipt of a nudge will be associated with reduced pre-op testing. The primary outcome will be the change in the percentage of patients undergoing pre-op testing at 12 months. Secondary outcomes will include the percentage of patients undergoing specific categories of pre-op tests (labs, EKGs, chest X-rays (CXRs)), the efficacy of each nudge, same-day surgery cancellations and cost savings. ETHICS AND DISSEMINATION: The study protocol was approved by the institutional review board of the University of California, Los Angeles as well as a nominated Data Safety Monitoring Board. If successful, we will have created a tool that can be disseminated rapidly to EHR vendors across the nation to reduce inappropriate testing for the most common low-risk surgical procedures in the country. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier: NCT04104256.


Assuntos
Extração de Catarata , Catarata , Economia Comportamental , Registros Eletrônicos de Saúde , Humanos , Cuidados de Baixo Valor , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Dev Cell ; 8(1): 31-42, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15669143

RESUMO

Escape from X inactivation results in expression of genes embedded within inactive chromatin, suggesting the existence of boundary elements between domains. We report that the 5' end of Jarid1c, a mouse escape gene adjacent to an inactivated gene, binds CTCF, displays high levels of histone H3 acetylation, and functions as a CTCF-dependent chromatin insulator. CpG island methylation at Jarid1c was very low during development and virtually absent at the CTCF sites, signifying that CTCF may influence DNA methylation and chromatin modifications. CTCF binding sites were also present at the 5' end of two other escape genes, mouse Eif2s3x and human EIF2S3, each adjacent to an inactivated gene, but not at genes embedded within large escape domains. Thus, CTCF was specifically bound to transition regions, suggesting a role in maintaining both X inactivation and escape domains. Furthermore, the evolution of X chromosome domains appears to be associated with repositioning of chromatin boundary elements.


Assuntos
Cromatina/metabolismo , Ilhas de CpG/fisiologia , Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Repressoras/metabolismo , Acetilação , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Células Cultivadas , Metilação de DNA , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Embrião de Mamíferos , Fator de Iniciação 2 em Eucariotos/metabolismo , Histona Desmetilases , Humanos , Imunoprecipitação/métodos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese/fisiologia , Oxirredutases N-Desmetilantes , Proteínas/metabolismo , Cromossomo X
6.
PLoS Biol ; 5(3): e47, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17326723

RESUMO

In flowering plants, the egg and sperm cells form within haploid gametophytes. The female gametophyte of Arabidopsis consists of two gametic cells, the egg cell and the central cell, which are flanked by five accessory cells. Both gametic and accessory cells are vital for fertilization; however, the mechanisms that underlie the formation of accessory versus gametic cell fate are unknown. In a screen for regulators of egg cell fate, we isolated the lachesis (lis) mutant which forms supernumerary egg cells. In lis mutants, accessory cells differentiate gametic cell fate, indicating that LIS is involved in a mechanism that prevents accessory cells from adopting gametic cell fate. The temporal and spatial pattern of LIS expression suggests that this mechanism is generated in gametic cells. LIS is homologous to the yeast splicing factor PRP4, indicating that components of the splice apparatus participate in cell fate decisions.


Assuntos
Arabidopsis/citologia , Células Germinativas/citologia , Sequência de Bases , Linhagem da Célula , Primers do DNA , Reação em Cadeia da Polimerase
7.
Urol Pract ; 7(4): 309-318, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37317463

RESUMO

INTRODUCTION: Intraoperative surgical outcomes are influenced by a wide variety of patient, surgeon and institutional factors. The current literature lacks comprehensive resources that describe best practices in preventing patient safety events and optimizing patient physiology during urological surgery. METHODS: A multidisciplinary panel of subject matter experts (urologists, nurses, anesthesiologists) was convened to evaluate the existing literature, create a white paper and disseminate this to urological providers. Focusing on intraoperative patient safety and physiology, a narrative review was undertaken and relevant guidelines and practical interventions were highlighted. RESULTS: Patient safety is optimized by preventing surgical site infections, wrong site surgery, venous thromboembolism, falls/positioning injuries, laser/fire injuries, excessive radiation exposure and harm from the adoption of new technology. Goals for intraoperative physiological parameters (temperature, glucose, fluid balance) are addressed as well as analgesic and anesthetic considerations in urological patients. In addition, practical tools are provided to assist in the quality improvement process. CONCLUSIONS: This article summarizes intraoperative factors related to patient safety and optimal physiology that can impact urological surgical outcomes. This overview can be used as a practical guide for process improvement to optimize the quality of intraoperative care.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32499328

RESUMO

OBJECTIVE: To test the hypothesis that antidrug antibodies (ADAs) against alemtuzumab could become relevant after repeated treatments for some individuals, possibly explaining occasional treatment resistance. METHODS: Recombinant alemtuzumab single-chain variable fragment antibody with a dual tandem nanoluciferase reporter linker was made and used to detect binding ADAs. Alemtuzumab immunoglobulin G Alexa Fluor 488 conjugate was used in a competitive binding cell-based assay to detect neutralizing ADAs. The assays were used to retrospectively screen, blinded, banked serum samples from people with MS (n = 32) who had received 3 or more cycles of alemtuzumab. Lymphocyte depletion was measured between baseline and about 1 month postinfusion. RESULTS: The number of individuals showing limited depletion of lymphocytes increased with the number of treatment cycles. Lack of depletion was also a poor prognostic feature for future disease activity. ADA responses were detected in 29/32 (90.6%) individuals. Neutralizing antibodies occurred before the development of limited depletion in 6/7 individuals (18.8% of the whole sample). Preinfusion, ADA levels predicted limited, postinfusion lymphocyte depletion. CONCLUSIONS: Although ADAs to alemtuzumab have been portrayed as being of no clinical significance, alemtuzumab-specific antibodies appear to be clinically relevant for some individuals, although causation remains to be established. Monitoring of lymphocyte depletion and the antidrug response may be of practical value in patients requiring additional cycles of alemtuzumab. ADA detection may help to inform on retreatment or switching to another treatment.


Assuntos
Alemtuzumab/efeitos adversos , Alemtuzumab/imunologia , Anticorpos/sangue , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/imunologia , Esclerose Múltipla/sangue , Esclerose Múltipla/tratamento farmacológico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Estudos Retrospectivos
9.
Am J Ther ; 16(4): 289-94, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19546804

RESUMO

Continuous spinal anesthesia (CSA) is an underutilized technique in modern anesthesia practice. Compared with other techniques of neuraxial anesthesia, CSA allows incremental dosing of an intrathecal local anesthetic for an indefinite duration, whereas traditional single-shot spinal anesthesia usually involves larger doses, a finite, unpredictable duration, and greater potential for detrimental hemodynamic effects including hypotension, and epidural anesthesia via a catheter may produce lesser motor block and suboptimal anesthesia in sacral nerve root distributions. This review compares CSA with other anesthetic techniques and also describes the history of CSA, its clinical applications, concerns regarding neurotoxicity, and other pharmacologic implications of its use. CSA has seen a waxing and waning of its popularity in clinical practice since its initial description in 1907. After case reports of cauda equina syndrome were reported with the use of spinal microcatheters for CSA, these microcatheters were withdrawn from clinical practice in the United States but continued to be used in Europe with no further neurologic sequelae. Because only large-bore catheters may be used in the United States, CSA is usually reserved for elderly patients out of concern for the risk of postdural puncture headache in younger patients. However, even in younger patients, sometimes the unique clinical benefits and hemodynamic stability involved in CSA outweigh concerns regarding postdural puncture headache. Clinical scenarios in which CSA may be of particular benefit include patients with severe aortic stenosis undergoing lower extremity surgery and obstetric patients with complex heart disease. CSA is an underutilized technique in modern anesthesia practice. Perhaps more accurately termed fractional spinal anesthesia, CSA involves intermittent dosing of local anesthetic solution via an intrathecal catheter. Where traditional spinal anesthesia involves a single injection with a somewhat unpredictable spread and duration of effect, CSA allows titration of the block level to the patient's needs, permits a spinal block of indefinite duration, and can provide greater hemodynamic stability than single-injection spinal anesthesia.


Assuntos
Raquianestesia/efeitos adversos , Raquianestesia/métodos , Raquianestesia/história , Esquema de Medicação , História do Século XX , Humanos , Polirradiculopatia/etiologia , Polirradiculopatia/história
10.
Cancer Res ; 62(1): 48-52, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11782357

RESUMO

CTCF is a widely expressed 11-zinc finger (ZF) transcription factor that is involved in different aspects of gene regulation including promoter activation or repression, hormone-responsive gene silencing, methylation-dependent chromatin insulation, and genomic imprinting. Because CTCF targets include oncogenes and tumor suppressor genes, we screened over 100 human tumor samples for mutations that might disrupt CTCF activity. We did not observe any CTCF mutations leading to truncations/premature stops. Rather, in breast, prostate, and Wilms' tumors, we observed four different CTCF somatic missense mutations involving amino acids within the ZF domain. Each ZF mutation abrogated CTCF binding to a subset of target sites within the promoters/insulators of certain genes involved in regulating cell proliferation but did not alter binding to the regulatory sequences of other genes. These observations suggest that CTCF may represent a novel tumor suppressor gene that displays tumor-specific "change of function" rather than complete "loss of function."


Assuntos
DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação de Sentido Incorreto , Proteínas Repressoras , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Sequência de Aminoácidos , Sequência de Bases , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/genética , Feminino , Genes Supressores de Tumor , Globinas/genética , Humanos , Masculino , Dados de Sequência Molecular , Muramidase/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Conformação Proteica , Especificidade por Substrato , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
11.
Genetics ; 167(4): 1975-86, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15342534

RESUMO

To identify genes with essential roles in male gametophytic development, including postpollination (progamic) events, we have undertaken a genetic screen based on segregation ratio distortion of a transposon-borne kanamycin-resistance marker. In a population of 3359 Arabidopsis Ds transposon insertion lines, we identified 20 mutants with stably reduced segregation ratios arising from reduced gametophytic transmission. All 20 mutants showed strict cosegregation of Ds and the reduced gametophytic transmission phenotype. Among these, 10 mutants affected both male and female transmission and 10 mutants showed male-specific transmission defects. Four male and female (ungud) mutants and 1 male-specific mutant showed cellular defects in microspores and/or in developing pollen. The 6 remaining ungud mutants and 9 male-specific (seth) mutants affected pollen functions during progamic development. In vitro and in vivo analyses are reported for 5 seth mutants. seth6 completely blocked pollen germination, while seth7 strongly reduced pollen germination efficiency and tube growth. In contrast, seth8, seth9, or seth10 pollen showed reduced competitive ability that was linked to slower rates of pollen tube growth. Gene sequences disrupted in seth insertions suggest essential functions for putative SETH proteins in diverse processes including protein anchoring, cell wall biosynthesis, signaling, and metabolism.


Assuntos
Arabidopsis/genética , Variação Genética , Mutagênese Insercional , Arabidopsis/crescimento & desenvolvimento , Sequência de Bases , Clonagem Molecular , Cruzamentos Genéticos , Primers do DNA , Reprodução
12.
Genome Biol ; 16: 52, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25887447

RESUMO

BACKGROUND: In mammals, X chromosome genes are present in one copy in males and two in females. To balance the dosage of X-linked gene expression between the sexes, one of the X chromosomes in females is silenced. X inactivation is initiated by upregulation of the lncRNA (long non-coding RNA) Xist and recruitment of specific chromatin modifiers. The inactivated X chromosome becomes heterochromatic and visits a specific nuclear compartment adjacent to the nucleolus. RESULTS: Here, we show a novel role for the lncRNA Firre in anchoring the inactive mouse X chromosome and preserving one of its main epigenetic features, H3K27me3. Similar to Dxz4, Firre is X-linked and expressed from a macrosatellite repeat locus associated with a cluster of CTCF and cohesin binding sites, and is preferentially located adjacent to the nucleolus. CTCF binding present initially in both male and female mouse embryonic stem cells is lost from the active X during development. Knockdown of Firre disrupts perinucleolar targeting and H3K27me3 levels in mouse fibroblasts, demonstrating a role in maintenance of an important epigenetic feature of the inactive X chromosome. No X-linked gene reactivation is seen after Firre knockdown; however, a compensatory increase in the expression of chromatin modifier genes implicated in X silencing is observed. Further experiments in female embryonic stem cells suggest that Firre does not play a role in X inactivation onset. CONCLUSIONS: The X-linked lncRNA Firre helps to position the inactive X chromosome near the nucleolus and to preserve one of its main epigenetic features.


Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , RNA Longo não Codificante/genética , Proteínas Repressoras/genética , Inativação do Cromossomo X/genética , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Metilação de DNA/genética , Feminino , Masculino , Camundongos , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Cromossomo X/genética
13.
Assessment ; 10(3): 266-72, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14503650

RESUMO

The present study examined the base rates of normal range Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A) profiles in an inpatient sample and examined the differences between adolescents with apparently valid normal range profiles (all clinical scale T-scores < 60) and those with elevated profiles on prior interventions, reported internalizing and externalizing symptoms, and MMPI-A validity scale scores and other indexes of underreporting. Normal range profiles cannot be adequately explained by a less pathological history prior to hospitalization or by defensiveness. Thirty percent of male and 25% of female adolescents produced valid MMPI-A profiles in which none of the clinical scales were elevated. Both male and female adolescents with normal range profiles were generally less likely to report internalizing symptoms than those with elevated profiles, but both groups report externalizing symptoms. Neither the standard MMPI-A validity scales nor additional validity scales discriminated between profile groups. Clinicians should not assume that normal range profiles indicate an absence of problems.


Assuntos
MMPI , Transtornos Mentais/psicologia , Adolescente , Feminino , Humanos , Masculino , Valores de Referência
14.
Cell Rep ; 7(4): 1020-9, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24794443

RESUMO

Epigenetic alterations, particularly in DNA methylation, are ubiquitous in cancer, yet the molecular origins and the consequences of these alterations are poorly understood. CTCF, a DNA-binding protein that regulates higher-order chromatin organization, is frequently altered by hemizygous deletion or mutation in human cancer. To date, a causal role for CTCF in cancer has not been established. Here, we show that Ctcf hemizygous knockout mice are markedly susceptible to spontaneous, radiation-, and chemically induced cancer in a broad range of tissues. Ctcf(+/-) tumors are characterized by increased aggressiveness, including invasion, metastatic dissemination, and mixed epithelial/mesenchymal differentiation. Molecular analysis of Ctcf(+/-) tumors indicates that Ctcf is haploinsufficient for tumor suppression. Tissues with hemizygous loss of CTCF exhibit increased variability in CpG methylation genome wide. These findings establish CTCF as a prominent tumor-suppressor gene and point to CTCF-mediated epigenetic stability as a major barrier to neoplastic progression.


Assuntos
Metilação de DNA , Genes Supressores de Tumor , Neoplasias/genética , Proteínas Repressoras/genética , Animais , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Haploinsuficiência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neoplasias/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Análise de Sobrevida
15.
PLoS One ; 7(4): e34915, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22532833

RESUMO

CTCF is a highly conserved, multifunctional zinc finger protein involved in critical aspects of gene regulation including transcription regulation, chromatin insulation, genomic imprinting, X-chromosome inactivation, and higher order chromatin organization. Such multifunctional properties of CTCF suggest an essential role in development. Indeed, a previous report on maternal depletion of CTCF suggested that CTCF is essential for pre-implantation development. To distinguish between the effects of maternal and zygotic expression of CTCF, we studied pre-implantation development in mice harboring a complete loss of function Ctcf knockout allele. Although we demonstrated that homozygous deletion of Ctcf is early embryonically lethal, in contrast to previous observations, we showed that the Ctcf nullizygous embryos developed up to the blastocyst stage (E3.5) followed by peri-implantation lethality (E4.5-E5.5). Moreover, one-cell stage Ctcf nullizygous embryos cultured ex vivo developed to the 16-32 cell stage with no obvious abnormalities. Using a single embryo assay that allowed both genotype and mRNA expression analyses of the same embryo, we demonstrated that pre-implantation development of the Ctcf nullizygous embryos was associated with the retention of the maternal wild type Ctcf mRNA. Loss of this stable maternal transcript was temporally associated with loss of CTCF protein expression, apoptosis of the developing embryo, and failure to further develop an inner cell mass and trophoectoderm ex vivo. This indicates that CTCF expression is critical to early embryogenesis and loss of its expression rapidly leads to apoptosis at a very early developmental stage. This is the first study documenting the presence of the stable maternal Ctcf transcript in the blastocyst stage embryos. Furthermore, in the presence of maternal CTCF, zygotic CTCF expression does not seem to be required for pre-implantation development.


Assuntos
Implantação do Embrião/genética , Proteínas Repressoras/genética , Alelos , Animais , Apoptose/genética , Blastocisto/fisiologia , Fator de Ligação a CCCTC , Desenvolvimento Embrionário/genética , Camundongos , Camundongos Knockout , Proteínas Repressoras/metabolismo
16.
PLoS One ; 7(4): e35532, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536400

RESUMO

Facioscapulohumeral Disease (FSHD) is a dominantly inherited progressive myopathy associated with aberrant production of the transcription factor, Double Homeobox Protein 4 (DUX4). The expression of DUX4 depends on an open chromatin conformation of the D4Z4 macrosatellite array and a specific haplotype on chromosome 4. Even when these requirements are met, DUX4 transcripts and protein are only detectable in a subset of cells indicating that additional constraints govern DUX4 production. Since the direction of transcription, along with the production of non-coding antisense transcripts is an important regulatory feature of other macrosatellite repeats, we developed constructs that contain the non-coding region of a single D4Z4 unit flanked by genes that report transcriptional activity in the sense and antisense directions. We found that D4Z4 contains two promoters that initiate sense and antisense transcription within the array, and that antisense transcription predominates. Transcriptional start sites for the antisense transcripts, as well as D4Z4 regions that regulate the balance of sense and antisense transcripts were identified. We show that the choice of transcriptional direction is reversible but not mutually exclusive, since sense and antisense reporter activity was often present in the same cell and simultaneously upregulated during myotube formation. Similarly, levels of endogenous sense and antisense D4Z4 transcripts were upregulated in FSHD myotubes. These studies offer insight into the autonomous distribution of muscle weakness that is characteristic of FSHD.


Assuntos
Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Transcrição Gênica , Animais , Sequência de Bases , Sítios de Ligação/genética , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Haplótipos , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Repetições de Microssatélites , Dados de Sequência Molecular , Família Multigênica , Fibras Musculares Esqueléticas/metabolismo , Mutagênese Sítio-Dirigida , Mioblastos Esqueléticos/metabolismo , Regiões Promotoras Genéticas , RNA Antissenso/genética , RNA Antissenso/metabolismo , Sítio de Iniciação de Transcrição
17.
Development ; 134(22): 4107-17, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17965055

RESUMO

Early seed development of sexually reproducing plants requires both maternal and paternal genomes but is prominently maternally influenced. A novel gametophytic maternal-effect mutant defective in early embryo and endosperm development, glauce (glc), has been isolated from a population of Arabidopsis Ds transposon insertion lines. The glc mutation results from a deletion at the Ds insertion site, and the molecular identity of GLC is not known. glc embryos can develop up to the globular stage in the absence of endosperm and glc central cells appear to be unfertilized. glc suppresses autonomous endosperm development observed in the fertilization-independent seed (fis) class mutants. glc is also epistatic to mea, one of the fis class mutants, in fertilized seeds, and is essential for the biparental embryonic expression of PHE1, a repressed downstream target of MEA. In addition, maternal GLC function is required for the paternal embryonic expression of the ribosome protein gene RPS5a and the AMP deaminase gene FAC1, both of which are essential for early embryo and endosperm development. These results indicate that factors derived from the female gametophyte activate a subset of the paternal genome of fertilized seeds.


Assuntos
Arabidopsis/embriologia , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Padrões de Herança/genética , Fenótipo , Transativadores/genética , Alelos , Proteínas de Arabidopsis/genética , Cromossomos de Plantas , Fertilização/fisiologia , Gametogênese/genética , Deleção de Genes , Genes de Plantas/fisiologia , Padrões de Herança/fisiologia , Modelos Biológicos , Plantas Geneticamente Modificadas , Sementes
18.
Hum Mol Genet ; 16(24): 3174-87, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17921506

RESUMO

Expansion of the polymorphic CGG repeats within the 5'-UTR of the FMR1 gene is associated with variable transcriptional regulation of FMR1. Here we report a novel gene, ASFMR1, overlapping the CGG repeat region of FMR1 and transcribed in the antisense orientation. The ASFMR1 transcript is spliced, polyadenylated and exported to the cytoplasm. Similar to FMR1, ASFMR1 is upregulated in individuals with premutation alleles and is not expressed from full mutation alleles. Moreover, it exhibits premutation-specific alternative splicing. Taken together, these observations suggest that in addition to FMR1, ASFMR1 may contribute to the variable phenotypes associated with the CGG repeat expansion.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Heterozigoto , Mutação , RNA Antissenso/genética , Repetições de Trinucleotídeos , Processamento Alternativo/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Encéfalo/metabolismo , Fator de Ligação a CCCTC , Células Cultivadas , Clonagem Molecular , Cricetinae , Proteínas de Ligação a DNA/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Inativação Gênica/fisiologia , Humanos , Camundongos , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeos/genética , RNA Antissenso/metabolismo , Proteínas Repressoras/metabolismo , Distribuição Tecidual , Regulação para Cima
19.
Plant Physiol ; 139(3): 1421-32, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16258010

RESUMO

Despite a central role in angiosperm reproduction, few gametophyte-specific genes and promoters have been isolated, particularly for the inaccessible female gametophyte (embryo sac). Using the Ds-based enhancer-detector line ET253, we have cloned an egg apparatus-specific enhancer (EASE) from Arabidopsis (Arabidopsis thaliana). The genomic region flanking the Ds insertion site was further analyzed by examining its capability to control gusA and GFP reporter gene expression in the embryo sac in a transgenic context. Through analysis of a 5' and 3' deletion series in transgenic Arabidopsis, the sequence responsible for egg apparatus-specific expression was delineated to 77 bp. Our data showed that this enhancer is unique in the Arabidopsis genome, is conserved among different accessions, and shows an unusual pattern of sequence variation. This EASE works independently of position and orientation in Arabidopsis but is probably not associated with any nearby gene, suggesting either that it acts over a large distance or that a cryptic element was detected. Embryo-specific ablation in Arabidopsis was achieved by transactivation of a diphtheria toxin gene under the control of the EASE. The potential application of the EASE element and similar control elements as part of an open-source biotechnology toolkit for apomixis is discussed.


Assuntos
Arabidopsis/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica de Plantas , Óvulo/metabolismo , Arabidopsis/embriologia , Sequência de Bases , Toxina Diftérica/genética , Flores/anatomia & histologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas/genética , Genes Reporter , Dados de Sequência Molecular , Mutação/genética , Especificidade de Órgãos , Óvulo/citologia , Fragmentos de Peptídeos/genética , Peroxidase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/citologia , Alinhamento de Sequência , Ativação Transcricional
20.
Development ; 130(10): 2149-59, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12668629

RESUMO

Reproduction in angiosperms depends on communication processes of the male gametophyte (pollen) with the female floral organs (pistil, transmitting tissue) and the female gametophyte (embryo sac). Pollen-pistil interactions control pollen hydration, germination and growth through the stylar tissue. The female gametophyte is involved in guiding the growing pollen tube towards the micropyle and embryo sac. One of the two synergids flanking the egg cell starts to degenerate and becomes receptive for pollen tube entry. Pollen tube growth arrests and the tip of the pollen tube ruptures to release the sperm cells. Failures in the mutual interaction between the synergid and the pollen tube necessarily impair fertility. But the control of pollen tube reception is not understood. We isolated a semisterile, female gametophytic mutant from Arabidopsis thaliana, named feronia after the Etruscan goddess of fertility, which impairs this process. In the feronia mutant, embryo sac development and pollen tube guidance were unaffected in all ovules, although one half of the ovules bore mutant female gametophytes. However, when the pollen tube entered the receptive synergid of a feronia mutant female gametophyte, it continued to grow, failed to rupture and release the sperm cells, and invaded the embryo sac. Thus, the feronia mutation disrupts the interaction between the male and female gametophyte required to elicit these processes. Frequently, mutant embryo sacs received supernumerary pollen tubes. We analysed feronia with synergid-specific GUS marker lines, which demonstrated that the specification and differentiation of the synergids was normal. However, GUS expression in mutant gametophytes persisted after pollen tube entry, in contrast to wild-type embryo sacs where it rapidly decreased. Apparently, the failure in pollen tube reception results in the continued expression of synergid-specific genes, probably leading to an extended expression of a potential pollen tube attractant.


Assuntos
Arabidopsis/fisiologia , Flores/fisiologia , Reprodução/fisiologia , Sementes/fisiologia , Arabidopsis/genética , Fertilidade/fisiologia , Genes de Plantas , Genes Reporter , Modelos Anatômicos , Mutação , Fenótipo , Sementes/anatomia & histologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA