Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 172: 103891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621582

RESUMO

Candida glabrata (Nakaseomyces glabrata) is an emergent and opportunistic fungal pathogen that colonizes and persists in different niches within its human host. In this work, we studied five clinical isolates from one patient (P7), that have a clonal origin, and all of which come from blood cultures except one, P7-3, obtained from a urine culture. We found phenotypic variation such as sensitivity to high temperature, oxidative stress, susceptibility to two classes of antifungal agents, and cell wall porosity. Only isolate P7-3 is highly resistant to the echinocandin caspofungin while the other four isolates from P7 are sensitive. However, this same isolate P7-3, is the only one that displays susceptibility to fluconazole (FLC), while the rest of the isolates are resistant to this antifungal. We sequenced the PDR1 gene which encodes a transcription factor required to induce the expression of several genes involved in the resistance to FLC and found that all the isolates encode for the same Pdr1 amino acid sequence except for the last isolate P7-5, which contains a single amino acid change, G1099C in the putative Pdr1 transactivation domain. Consistent with the resistance to FLC, we found that the CDR1 gene, encoding the main drug efflux pump in C. glabrata, is highly overexpressed in the FLC-resistant isolates, but not in the FLC-sensitive P7-3. In addition, the resistance to FLC observed in these isolates is dependent on the PDR1 gene. Additionally, we found that all P7 isolates have a different proportion of cell wall carbohydrates compared to our standard strains CBS138 and BG14. In P7 isolates, mannan is the most abundant cell wall component, whereas ß-glucan is the most abundant component in our standard strains. Consistently, all P7 isolates have a relatively low cell wall porosity compared to our standard strains. These data show phenotypic and genotypic variability between clonal isolates from different niches within a single host, suggesting microevolution of C. glabrata during an infection.


Assuntos
Antifúngicos , Candida glabrata , Farmacorresistência Fúngica , Proteínas Fúngicas , Testes de Sensibilidade Microbiana , Candida glabrata/genética , Candida glabrata/efeitos dos fármacos , Antifúngicos/farmacologia , Humanos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fluconazol/farmacologia , Parede Celular/genética , Parede Celular/efeitos dos fármacos , Candidíase/microbiologia , Caspofungina/farmacologia , Evolução Molecular , Estresse Oxidativo/genética , Equinocandinas/farmacologia , Fatores de Transcrição/genética
2.
Clin Microbiol Rev ; 32(2)2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30814115

RESUMO

Patients with suppressed immunity are at the highest risk for hospital-acquired infections. Among these, invasive candidiasis is the most prevalent systemic fungal nosocomial infection. Over recent decades, the combined prevalence of non-albicans Candida species outranked Candida albicans infections in several geographical regions worldwide, highlighting the need to understand their pathobiology in order to develop effective treatment and to prevent future outbreaks. Candida parapsilosis is the second or third most frequently isolated Candida species from patients. Besides being highly prevalent, its biology differs markedly from that of C. albicans, which may be associated with C. parapsilosis' increased incidence. Differences in virulence, regulatory and antifungal drug resistance mechanisms, and the patient groups at risk indicate that conclusions drawn from C. albicans pathobiology cannot be simply extrapolated to C. parapsilosis Such species-specific characteristics may also influence their recognition and elimination by the host and the efficacy of antifungal drugs. Due to the availability of high-throughput, state-of-the-art experimental tools and molecular genetic methods adapted to C. parapsilosis, genome and transcriptome studies are now available that greatly contribute to our understanding of what makes this species a threat. In this review, we summarize 10 years of findings on C. parapsilosis pathogenesis, including the species' genetic properties, transcriptome studies, host responses, and molecular mechanisms of virulence. Antifungal susceptibility studies and clinician perspectives are discussed. We also present regional incidence reports in order to provide an updated worldwide epidemiology summary.


Assuntos
Candida parapsilosis/genética , Candidíase/epidemiologia , Infecção Hospitalar/epidemiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/patogenicidade , Candidíase/tratamento farmacológico , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Perfilação da Expressão Gênica , Humanos , Incidência , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA , Análise de Sequência de RNA
3.
Fungal Genet Biol ; 140: 103397, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32325170

RESUMO

Microbial interactions may impact patient's diagnosis, prognosis and treatment. Sporotrichosis is a hyperendemic neglected zoonosis in Brazil, caused by Sporothrix brasiliensis. Four pairs of clinical isolates of Sporothrix were recovered from four diseased cats (CIM01-CIM04, two isolates per animal) raising the possibility of coinfection in a sporotrichosis hyperendemic area, Brazil. Each isolate of the pair had distinct pigmentation in mycological culture, and was designated as "Light" or "Dark", for low and high pigmentation, respectively. Dark isolates reacted strongly with monoclonal antibodies to melanin (p ≤ 0.05) by both ELISA and FACS quantitation, and displayed a ring pattern with some regions exhibiting higher punctuated labeling at cell wall by immunofluorescence. In turn, Light isolates reacted less intensely, with few and discrete punctuated labeling at the cell wall. PCR identified all isolates as S. brasiliensis, MAT1-2 idiomorph. Sequencing of ß-tubulin and calmodulin genes followed by phylogenetic analysis placed all eight isolates within the same cluster as others from the Brazilian hyperendemic area. The ability of these strains to stimulate cytokine production by human PBMCs (Peripheral blood mononuclear cells) was also analyzed. CIM01 and CIM03 Light and Dark isolates showed similar cytokine profiles to the control strain, while CIM02 and CIM04 behaved differently (p < 0.001), suggesting that differences in the surface of the isolates can influence host-fungus interaction. MICs for amphotericin B, terbinafine, caspofungin, micafungin, itraconazole, fluconazole, and voriconazole were obtained (CLSI M38-A2/M27-A3). Pairwise comparisons showed distinct MICs between Sporothrix Light and Dark isolates, higher than at least two-fold dilutions, to at least one of the antifungals tested. Isolates from the same pair displayed discrepancies in relation to fungistatic or fungicidal drug activity, notably after itraconazole exposure. Since S. brasiliensis Light and Dark isolates show disparate phenotypic parameters it is quite possible that coinfection represents a common occurrence in the hyperendemic area, with potential clinical implications on feline sporotrichosis dynamics. Alternatively, future studies will address if this specie may have, as reported for other fungi, broad phenotypic plasticity.


Assuntos
Coinfecção/microbiologia , Sporothrix/genética , Esporotricose/microbiologia , Animais , Brasil/epidemiologia , Gatos , Coinfecção/genética , Coinfecção/veterinária , Doenças Endêmicas/prevenção & controle , Doenças Endêmicas/veterinária , Leucócitos Mononucleares/microbiologia , Testes de Sensibilidade Microbiana , Filogenia , Sporothrix/classificação , Sporothrix/isolamento & purificação , Sporothrix/patogenicidade , Esporotricose/epidemiologia , Esporotricose/genética , Esporotricose/veterinária
4.
Glycobiology ; 29(6): 469-478, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869134

RESUMO

Certain viral infections are known to modify the glycosylation profile of infected cells through the overexpression of specific host cell fucosyltransferases (FUTs). Infection with CMV (cytomegalovirus), HCV (hepatitis C virus), HSV-1 (herpes simplex virus type-1) and VZV (varicella-zoster virus) increase the expression of fucosylated epitopes, including antigens sLex (Siaα2-3 Galß1-4(Fucα1-3)GlcNAcß1-R) and Ley (Fucα1-2 Galß1-4(Fucα1-3)GlcNAcß1-R). The reorganization of the glycocalyx induced by viral infection may favor the spread of viral progeny, and alter diverse biological functions mediated by glycans, including recognition by the adaptive immune system. In this work, we aimed to establish whether infection with human adenovirus type 5 (HAd5), a well-known viral vector and infectious agent, causes changes in the glycosylation profile of A549 cells, used as a model of lung epithelium, a natural target of HAd5. We demonstrate for the first time that HAd5 infection causes a significant increase in the cell surface de novo fucosylation, as assessed by metabolic labeling, and that such modification is dependent on the expression of viral genes. The main type of increased fucosylation was determined to be in α1-2 linkage, as assessed by UEA-I lectin binding and supported by the overexpression of FUT1 and FUT2. Also, HAd5-infected cells showed a heterogeneous change in the expression profile of the bi-fucosylated Ley antigen, an antigen associated with enhanced cell proliferation and inhibition of apoptosis.


Assuntos
Adenovírus Humanos/imunologia , Adenovírus Humanos/fisiologia , Fucose/metabolismo , Antígenos do Grupo Sanguíneo de Lewis/genética , Células A549 , Humanos , Antígenos do Grupo Sanguíneo de Lewis/imunologia , Antígenos do Grupo Sanguíneo de Lewis/metabolismo
5.
Glycobiology ; 29(7): 557-564, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30989215

RESUMO

The activation of human naïve CD4+ T cells, responsible for orchestrating the immune response, has been reported to cause increased de novo sialylation and overexpression of the genes coding for polysialyltransferases ST8SiaII and ST8SiaIV, suggesting the potential of CD4+ T cells to synthesize polysialic acid (PSA), a type of glycosylation not previously described in these cells. PSA has been found as a post-translational modification in a limited number of mammalian proteins, having a very relevant role in modulating interactions due to its characteristic biophysical properties. In this work, we confirm that human CD4+ T cells express both polysialyltransferases and synthesize PSA, as assessed with the anti-PSA monoclonal antibody (mAb) 12E3. The expression of PSA in resting cells was found restricted to a cell subpopulation (PSA+), that after anti-CD3/anti-CD28 mAbs mediated activation, increased in percentage and mean fluorescence intensity (MFI) expression. Additionally, through ST8SIAII and ST8SIAIV-silencing and by measuring the mRNA of IL-2, IL-2R and IFN-γ, we show that PSA is involved in modulating the activation response of CD4+ T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ácidos Siálicos/biossíntese , Linfócitos T CD4-Positivos/citologia , Glicosilação , Humanos , Ácidos Siálicos/imunologia , Sialiltransferases/metabolismo
6.
Plasmid ; 100: 1-5, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30236508

RESUMO

Some members of the Sporothrix genus can cause sporotrichosis, a worldwide distributed mycosis that affects several mammalian species, including human beings. Sporothrix schenckii and Sporothrix brasiliensis are the fungal species frequently associated with this disease, and the latter has gained significant interest because of the increased number of cases associated with transmission by cats. Despite the relevance of these organisms in the medical field, limited strategies for their genetic manipulation have been explored. Thus far, gene silencing using the hygromycin B resistance cassette is the sole strategy currently available to study these organisms. Here, we report the generation of a cassette that confers resistance to nourseothricin, which was successfully transferred from Agrobacterium tumefaciens to Sporothrix cells. Therefore, this can be used as a second selective marker to manipulate the genome of these organisms.


Assuntos
Engenharia Genética/métodos , Genoma Fúngico , Plasmídeos/química , Sporothrix/genética , Estreptotricinas/farmacologia , Agrobacterium tumefaciens/genética , Antibacterianos/farmacologia , Farmacorresistência Fúngica/genética , Plasmídeos/metabolismo , Sporothrix/efeitos dos fármacos , Transformação Genética
7.
FEMS Yeast Res ; 18(5)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718196

RESUMO

Candida tropicalis is an opportunistic fungal pathogen responsible for mucosal and systemic infections. The cell wall is the initial contact point between a fungal cell and the host immune system, and mannoproteins are important components that play key roles when interacting with host cells. In Candida albicans, mannans are modified by mannosyl-phosphate moieties, named phosphomannans, which can work as molecular scaffolds to synthesize ß1,2-mannooligosaccharides, and MNN4 is a positive regulator of the phosphomannosylation pathway. Here, we showed that C. tropicalis also displays phosphomannans on the cell surface, but the amount of this cell wall component varies depending on the fungal strain. We also identified a functional ortholog of CaMNN4 in C. tropicalis. Disruption of this gene caused depletion of phosphomannan content. The C. tropicalis mnn4Δ did not show defects in the ability to stimulate cytokine production by human mononuclear cells but displayed virulence attenuation in an insect model of candidiasis. When the mnn4Δ-macrophage interaction was analyzed, results showed that presence of cell wall phosphomannan was critical for C. tropicalis phagocytosis. Finally, our results strongly suggest a differential role for phosphomannans during phagocytosis of C. albicans and C. tropicalis.


Assuntos
Candida tropicalis/genética , Candida tropicalis/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Macrófagos/microbiologia , Mananas/metabolismo , Glicoproteínas de Membrana/metabolismo , Candida tropicalis/patogenicidade , Parede Celular/metabolismo , Células Cultivadas , Citocinas/imunologia , Humanos , Macrófagos/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Fagocitose , Virulência
8.
Med Mycol ; 56(suppl_1): 126-143, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29538731

RESUMO

The description of cryptic species with different pathogenic potentials has changed the perspectives on sporotrichosis. Sporothrix schenckii causes a benign chronic subcutaneous mycosis, Sporothrix brasiliensis is highly virulent, and Sporothrix globosa mainly causes fixed cutaneous lesions. Furthermore, S. brasiliensis is the prevalent species related to cat-transmitted sporotrichosis. Sources of infection, transmission, and distribution patterns also differ between species, and variability differs between species because of different degrees of clonality. The present review article will cover several aspects of the biology of clinically relevant agents of sporotrichosis, including epidemiological aspects of emerging species. Genomic information of Sporothrix spp. is also discussed. The cell wall is an essential structure for cell viability, interaction with the environment, and the host immune cells and contains several macromolecules involved in virulence. Due to its importance, aspects of glycosylation and cell wall polysaccharides are reviewed. Recent genome data and bioinformatics analyses helped to identify specific enzymes of the biosynthetic glycosylation routes, with no homologs in mammalian cells, which can be putative targets for development of antifungal drugs. A diversity of molecular techniques is available for the recognition of the clinically relevant species of Sporothrix. Furthermore, antigens identified as diagnostic markers and putative vaccine candidates are described. Cell-mediated immunity plays a key role in controlling infection, but Sporothrix species differ in their interaction with the host. The adaptive branch of the immune response is essential for appropriate control of infection.


Assuntos
Sporothrix/fisiologia , Esporotricose/diagnóstico , Esporotricose/imunologia , Animais , Antígenos de Fungos/imunologia , Parede Celular/química , Parede Celular/metabolismo , Genoma Fúngico , Especificidade de Hospedeiro/imunologia , Humanos , Técnicas de Diagnóstico Molecular , Sporothrix/classificação , Sporothrix/imunologia , Esporotricose/microbiologia , Esporotricose/transmissão , Virulência
9.
J Org Chem ; 81(7): 2888-98, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26966917

RESUMO

Eleven formyl-containing BODIPY dyes were prepared by means of either the Liebeskind-Srogl cross-coupling reaction or the Vilsmeier reaction. These dyes were used as components in the Passerini reaction to give highly substituted BODIPY dyes. A joined spectroscopic and theoretical characterization of the synthesized compounds was conducted to unravel the impact of the structural rigidity/flexibility on the photophysical signatures. These dyes were tested as fluorescent trackers for phagocytosis. Additionally, they proved to be useful to stain different blood cells with an intense and stable signal at a very low exposure time.


Assuntos
Corantes Fluorescentes/química , Compostos de Boro , Citofagocitose/efeitos dos fármacos , Estrutura Molecular , Espectrofotometria Ultravioleta
10.
Fungal Genet Biol ; 76: 36-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25677379

RESUMO

The cell wall of fungi is generally composed of an inner skeletal layer consisting of various polysaccharides surrounded by a layer of glycoproteins. These usually contain both N- and O-linked oligosaccharides, coupled to the proteins by stepwise addition of mannose residues by mannosyltransferases in the endoplasmic reticulum and the Golgi apparatus. In yeast, an essential luminal cofactor for these mannosyltransferases is Mn(2+) provided by the Ca(2+)/Mn(2+)-ATPase known as Pmr1. In this study, we have identified and characterized the Botrytis cinerea pmr1 gene, the closest homolog of yeast PMR1. We hypothesized that bcpmr1 also encodes a Ca(2+)/Mn(2+)-ATPase that plays an important role in the protein glycosylation pathway. Phenotypic analysis showed that bcpmr1 null mutants displayed a significant reduction in conidial production, radial growth and diameter of sclerotia. Significant alterations in hyphal cell wall composition were observed including a 83% decrease of mannan levels and an increase in the amount of chitin and glucan. These changes were accompanied by a hypersensitivity to cell wall-perturbing agents such as Calcofluor white, Congo red and zymolyase. Importantly, the Δbcpmr1 mutant showed reduced virulence in tomato (leafs and fruits) and apple (fruits) and reduced biofilm formation. Together, our results highlight the importance of bcpmr1 for protein glycosylation, cell wall structure and virulence of B. cinerea.


Assuntos
Botrytis/fisiologia , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Malus/microbiologia , Solanum lycopersicum/microbiologia , Botrytis/crescimento & desenvolvimento , Botrytis/patogenicidade , Frutas/microbiologia , Solanum lycopersicum/citologia , Malus/citologia , Mutação , Folhas de Planta/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
11.
PLoS Pathog ; 9(4): e1003315, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637604

RESUMO

The ß-glucan receptor Dectin-1 is a member of the C-type lectin family and functions as an innate pattern recognition receptor in antifungal immunity. In both mouse and man, Dectin-1 has been found to play an essential role in controlling infections with Candida albicans, a normally commensal fungus in man which can cause superficial mucocutaneous infections as well as life-threatening invasive diseases. Here, using in vivo models of infection, we show that the requirement for Dectin-1 in the control of systemic Candida albicans infections is fungal strain-specific; a phenotype that only becomes apparent during infection and cannot be recapitulated in vitro. Transcript analysis revealed that this differential requirement for Dectin-1 is due to variable adaptation of C. albicans strains in vivo, and that this results in substantial differences in the composition and nature of their cell walls. In particular, we established that differences in the levels of cell-wall chitin influence the role of Dectin-1, and that these effects can be modulated by antifungal drug treatment. Our results therefore provide substantial new insights into the interaction between C. albicans and the immune system and have significant implications for our understanding of susceptibility and treatment of human infections with this pathogen.


Assuntos
Antifúngicos/farmacologia , Candida albicans/imunologia , Parede Celular/efeitos dos fármacos , Lectinas Tipo C/imunologia , Animais , Candida albicans/genética , Caspofungina , Parede Celular/química , Quitina/metabolismo , Equinocandinas/farmacologia , Lectinas Tipo C/genética , Lipopeptídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Reconhecimento de Padrão/imunologia , beta-Glucanas/metabolismo
12.
FEMS Yeast Res ; 15(6)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26260509

RESUMO

Sporotrichosis has been attributed for more than a century to one single etiological agent, Sporothrix schencki. Only eight years ago, it was described that, in fact, the disease is caused by several pathogenic cryptic species. The present review will focus on recent advances to understand the biology and virulence of epidemiologically relevant pathogenic species of the S. schenckii complex. The main subjects covered are the new clinical and epidemiological aspects including diagnostic and therapeutic challenges, the development of molecular tools, the genome database and the perspectives for study of virulence of emerging Sporothrix species.


Assuntos
Genoma Fúngico , Sporothrix/genética , Sporothrix/fisiologia , Esporotricose/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Antifúngicos/uso terapêutico , Humanos , Técnicas de Diagnóstico Molecular , Esporotricose/diagnóstico , Esporotricose/tratamento farmacológico , Esporotricose/epidemiologia , Virulência
13.
Med Mycol ; 53(1): 60-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25526779

RESUMO

Protein glycosylation pathways are conserved metabolic processes in eukaryotic organisms and are required for cell fitness. In fungal pathogens, the N-linked glycosylation pathway is indispensable for proper cell wall composition and virulence. In Sporothrix schenckii sensu stricto, the causative agent of sporotrichosis, little is known about this glycosylation pathway. Here, using a genome-wide screening for putative members of the glycosyl hydrolase (CAZy - GH) families 47 and 63, which group enzymes involved in the processing step during N-linked glycan maturation, we found seven homologue genes belonging to family 47 and one to family 63. The eight genes were individually expressed in C. albicans null mutants lacking either MNS1 (for members of family 47) or CWH41 (for the member of family 63). Our results indicate that SsCWH41 is the functional ortholog of CaCWH41, whereas SsMNS1 is the functional ortholog of CaMNS1. The remaining genes of family 47 encode Golgi mannosidases and endoplasmic reticulum degradation-enhancing alpha-mannosidase-like proteins (EDEMs). Since these GH families gather proteins used as target for drugs to control cell growth, identification of these genes could help in the design of antifungals that could be used to treat sporotrichosis and other fungal diseases. In addition, to our knowledge, we are the first to report that Golgi mannosidases and EDEMs are expressed and characterized in yeast cells.


Assuntos
Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Sporothrix/enzimologia , Candida albicans/enzimologia , Candida albicans/genética , Candida albicans/metabolismo , Clonagem Molecular , Biologia Computacional , Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosilação , Sporothrix/genética
14.
J Biol Chem ; 288(30): 22006-18, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23720756

RESUMO

The fungus Candida glabrata is an important and increasingly common pathogen of humans, particularly in immunocompromised hosts. Despite this, little is known about the attributes that allow this organism to cause disease or its interaction with the host immune system. However, in common with other fungi, the cell wall of C. glabrata is the initial point of contact between the host and pathogen, and as such, it is likely to play an important role in mediating interactions and hence virulence. Here, we show both through genetic complementation and polysaccharide structural analyses that C. glabrata ANP1, MNN2, and MNN11 encode functional orthologues of the respective Saccharomyces cerevisiae mannosyltransferases. Furthermore, we show that deletion of the C. glabrata Anp1, Mnn2, and Mnn11 mannosyltransferases directly affects the structure of the fungal N-linked mannan, in line with their predicted functions, and this has implications for cell wall integrity and consequently virulence. C. glabrata anp1 and mnn2 mutants showed increased virulence, compared with wild-type (and mnn11) cells. This is in contrast to Candida albicans where inactivation of genes involved in mannan biosynthesis has usually been linked to an attenuation of virulence. In the long term, a better understanding of the attributes that allow C. glabrata to cause disease will provide insights that can be adopted for the development of novel therapeutic and diagnostic approaches.


Assuntos
Candida glabrata/genética , Proteínas Fúngicas/genética , Manosiltransferases/genética , Mutação , Animais , Candida glabrata/enzimologia , Candida glabrata/patogenicidade , Candidíase/microbiologia , Sequência de Carboidratos , Linhagem Celular , Parede Celular/genética , Parede Celular/metabolismo , Células Endoteliais/citologia , Células Endoteliais/microbiologia , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Glicosilação , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Estimativa de Kaplan-Meier , Espectroscopia de Ressonância Magnética , Masculino , Mananas/química , Mananas/metabolismo , Manosiltransferases/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Virulência/genética
15.
BMC Genomics ; 15: 943, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25351875

RESUMO

BACKGROUND: The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. RESULTS: The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. CONCLUSIONS: Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.


Assuntos
Doenças do Gato/microbiologia , Proteínas Fúngicas/genética , Sporothrix/genética , Esporotricose/transmissão , Fatores de Virulência/genética , Adaptação Biológica , Animais , Doenças do Gato/transmissão , Gatos , Evolução Molecular , Especiação Genética , Genoma Mitocondrial , Humanos , Filogenia , Sporothrix/classificação , Sporothrix/patogenicidade , Esporotricose/microbiologia , Esporotricose/veterinária
16.
Infect Drug Resist ; 17: 171-185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38268929

RESUMO

Fungal infections represent a constant and growing menace to public health. This concern is due to the emergence of new fungal species and the increase in antifungal drug resistance. Mycoses caused by Candida species are among the most common nosocomial infections and are associated with high mortality rates when the infection affects deep-seated organs. Candida metapsilosis is part of the Candida parapsilosis complex and has been described as part of the oral microbiota of healthy individuals. Within the complex, this species is considered the least virulent; however, the prevalence has been increasing in recent years, as well as an increment in the resistance to some antifungal drugs. One of the main concerns of candidiasis caused by this species is the wide range of clinical manifestations, ranging from tissue colonization to superficial infections, and in more severe cases it can spread, which makes diagnosis and treatment difficult. The study of virulence factors of this species is limited, however, proteomic comparisons between species indicate that virulence factors in this species could be similar to those already described for C. albicans. However, differences may exist, taking into account changes in the lifestyle of the species. Here, we provide a detailed review of the current literature about this organism, the caused disease, and some sharing aspects with other members of the complex, focusing on its biology, virulence factors, the host-fungus interaction, the identification, diagnosis, and treatment of infection.

17.
Infect Drug Resist ; 17: 2641-2658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947372

RESUMO

Fungal infections represent a worldwide concern for public health, due to their prevalence and significant increase in cases each year. Among the most frequent mycoses are those caused by members of the genera Candida, Cryptococcus, Aspergillus, Histoplasma, Pneumocystis, Mucor, and Sporothrix, which have been treated for years with conventional antifungal drugs, such as flucytosine, azoles, polyenes, and echinocandins. However, these microorganisms have acquired the ability to evade the mechanisms of action of these drugs, thus hindering their treatment. Among the most common evasion mechanisms are alterations in sterol biosynthesis, modifications of drug transport through the cell wall and membrane, alterations of drug targets, phenotypic plasticity, horizontal gene transfer, and chromosomal aneuploidies. Taking into account these problems, some research groups have sought new therapeutic alternatives based on drug repositioning. Through repositioning, it is possible to use existing pharmacological compounds for which their mechanism of action is already established for other diseases, and thus exploit their potential antifungal activity. The advantage offered by these drugs is that they may be less prone to resistance. In this article, a comprehensive review was carried out to highlight the most relevant repositioning drugs to treat fungal infections. These include antibiotics, antivirals, anthelmintics, statins, and anti-inflammatory drugs.

18.
J Fungi (Basel) ; 10(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786657

RESUMO

Sporothrix schenckii is one of the etiological agents of sporotrichosis, a cutaneous and subcutaneous infection distributed worldwide. Like other medically relevant fungi, its cell wall is a molecular scaffold to display virulence factors, such as protective pigments, hydrolytic enzymes, and adhesins. Cell wall proteins with adhesive properties have been previously reported, but only a handful of them have been identified and characterized. One of them is Gp70, an abundant cell wall protein mainly found on the surface of yeast-like cells. Since the protein also has a role in the activity of 3-carboxy-cis,cis-muconate cyclase and its abundance is low in highly virulent strains, its role in the Sporothrix-host interaction remains unclear. Here, a set of GP70-silenced strains was generated, and the molecular and phenotypical characterization was performed. The results showed that mutants with high silencing levels showed a significant reduction in the adhesion to laminin and fibrinogen, enzyme activity, and defects in the cell wall composition, which included reduced mannose, rhamnose, and protein content, accompanied by an increment in ß-1,3-glucans levels. The cell wall N-linked glycan content was significantly reduced. These strains induced poor TNFα and IL-6 levels when interacting with human peripheral blood mononuclear cells in a dectin-1-, TLR2-, and TLR4-dependent stimulation. The IL-1ß and IL-10 levels were significantly higher and were stimulated via dectin-1. Phagocytosis and stimulation of neutrophil extracellular traps by human granulocytes were increased in highly GP70-silenced strains. Furthermore, these mutants showed virulence attenuation in the invertebrate model Galleria mellonella. Our results demonstrate that Gp70 is a versatile protein with adhesin properties, is responsible for the activity of 3-carboxy-cis,cis-muconate cyclase, and is relevant for the S. schenckii-host interaction.

19.
PeerJ ; 12: e17117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500532

RESUMO

Mammalian models, such as murine, are used widely in pathophysiological studies because they have a high degree of similarity in body temperature, metabolism, and immune response with humans. However, non-vertebrate animal models have emerged as alternative models to study the host-pathogen interaction with minimal ethical concerns. Galleria mellonella is an alternative model that has proved useful in studying the interaction of the host with either bacteria or fungi, performing drug testing, and assessing the immunological response to different microorganisms. The G. mellonella immune response includes cellular and humoral components with structural and functional similarities to the immune effectors found in higher vertebrates, such as humans. An important humoral effector stimulated during infections is apolipophorin III (apoLp-III), an opsonin characterized by its lipid and carbohydrate-binding properties that participate in lipid transport, as well as immunomodulatory activity. Despite some parameters, such as the measurement of phenoloxidase activity, melanin production, hemocytes counting, and expression of antimicrobial peptides genes are already used to assess the G. mellonella immune response to pathogens with different virulence degrees, the apoLp-III quantification remains to be a parameter to assess the immune response in this invertebrate. Here, we propose an immunological tool based on an enzyme-linked immunosorbent assay that allows apoLp-III quantification in the hemolymph of larvae challenged with pathogenic agents. We tested the system with hemolymph coming from larvae infected with Escherichia coli, Candida albicans, Sporothrix schenckii, Sporothrix globosa, and Sporothrix brasiliensis. The results revealed significantly higher concentrations of apoLp-III when each microbial species was inoculated, in comparison with untouched larvae, or inoculated with phosphate-buffered saline. We also demonstrated that the apoLp-III levels correlated with the strains' virulence, which was already reported. To our knowledge, this is one of the first attempts to quantify apoLp-III, using a quick and easy-to-use serological technique.


Assuntos
Mariposas , Humanos , Animais , Camundongos , Apolipoproteínas/química , Larva , Interações Hospedeiro-Patógeno , Mamíferos/metabolismo
20.
Front Genet ; 15: 1363558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770420

RESUMO

This report outlines the case of a child affected by a type of congenital disorder of glycosylation (CDG) known as ALG2-CDG (OMIM 607906), presenting as a congenital myasthenic syndrome (CMS) caused by variants identified in ALG2, which encodes an α1,3-mannosyltransferase (EC 2.4.1.132) involved in the early steps of N-glycosylation. To date, fourteen cases of ALG2-CDG have been documented worldwide. From birth, the child experienced perinatal asphyxia, muscular weakness, feeding difficulties linked to an absence of the sucking reflex, congenital hip dislocation, and hypotonia. Over time, additional complications emerged, such as inspiratory stridor, gastroesophageal reflux, low intake, recurrent seizures, respiratory infections, an inability to maintain the head upright, and a global developmental delay. Whole genome sequencing (WGS) revealed the presence of two ALG2 variants in compound heterozygosity: a novel variant c.1055_1056delinsTGA p.(Ser352Leufs*3) and a variant of uncertain significance (VUS) c.964C>A p.(Pro322Thr). Additional studies, including determination of carbohydrate-deficient transferrin (CDT) revealed a mild type I CDG pattern and the presence of an abnormal transferrin glycoform containing a linear heptasaccharide consisting of one sialic acid, one galactose, one N-acetyl-glucosamine, two mannoses and two N-acetylglucosamines (NeuAc-Gal-GlcNAc-Man2-GlcNAc2), ALG2-CDG diagnostic biomarker, confirming the pathogenicity of these variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA