Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Inorg Chem ; 24(1): 71-89, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30474755

RESUMO

The development of pharmacologically active compounds based on bis(thiosemicarbazones) (BTSC) and on their coordination to metal centers constitutes a promising field of research. We have recently explored this class of ligands and their Cu(II) complexes for the design of cancer theranostics agents with enhanced uptake by tumoral cells. In the present work, we expand our focus to aliphatic and aromatic BTSC Zn(II) complexes bearing piperidine/morpholine pendant arms. The new complexes ZnL1-ZnL4 were characterized by a variety of analytical techniques, which included single-crystal X-ray crystallography for ZnL2 and ZnL3. Taking advantage of the fluorescent properties of the aromatic complexes, we investigated their cellular uptake kinetics and subcellular localization. Furthermore, we tried to elucidate the mechanism of action of the cytotoxic effect observed in human cancer cell line models. The results show that the aliphatic complexes (ZnL1 and ZnL2) have a symmetrical structure, while the aromatic counterparts (ZnL3 and ZnL4) have an asymmetrical nature. The cytotoxic activity was higher for the aromatic BTSC complexes, as well as the cellular uptake, evaluated by measurement of intracellular Zn accumulation. Among the most active complexes, ZnL3 presented the fastest uptake kinetics and lysosomal localization assessed by live-cell microscopy. Detailed studies of its impact on cellular production of reactive oxygen species and impairment of lysosomal membrane integrity reinforced the influence of the pendant piperidine in the biological performance of aromatic BTSC Zn(II) complexes.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Tiossemicarbazonas/farmacologia , Zinco/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Tiossemicarbazonas/química , Zinco/química
2.
Org Biomol Chem ; 14(9): 2749-54, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26853381

RESUMO

Novel strategies for the efficient synthesis of unsymmetrical glycosyl disulfides are reported. Glycosyl disulfides are increasingly important as glycomimetics and molecular probes in glycobiology. Sialosyl disulfides are synthesised directly from the chlorosialoside Neu5Ac2Cl, proceeding via a thiol-disulfide exchange reaction between the sialosyl thiolate and symmetrical disulfides. This methodology was adapted and found to be successfully applicable to the synthesis of unsymmetrical glucosyl disulfides under mild conditions.


Assuntos
Dissulfetos/síntese química , Configuração de Carboidratos , Dissulfetos/química , Glicosilação
3.
Org Biomol Chem ; 13(18): 5182-94, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25849043

RESUMO

Merging classical organic anticancer drugs with metal-based compounds in one single molecule offers the possibility of exploring new approaches for cancer theranostics, i.e. the combination of diagnostic and therapeutic modalities. For this purpose, we have synthesized and biologically evaluated a series of Re(I)/(99m)Tc(I) tricarbonyl complexes (Re1­Re4 and Tc1­Tc4, respectively) stabilized by a cysteamine-based (N,S,O) chelator and containing 2-(4'-aminophenyl)benzothiazole pharmacophores. With the exception of Re1, all the Re complexes have shown a moderate cytotoxicity in MCF7 and PC3 cancer cells (IC50 values in the 15.9­32.1 µM range after 72 h of incubation). The cytotoxic activity of the Re complexes is well correlated with cellular uptake that was quantified using the isostructural (99m)Tc congeners. There is an augmented cytotoxic effect for Re3 and Re4 (versusRe1 and Re2), and the highest cellular uptake for Tc3 and Tc4, which display a long ether-containing linker to couple the pharmacophore to the (N,S,O)-chelator framework. Moreover, fluorescence microscopy clearly confirmed the cytosolic accumulation of the most cytotoxic compound (Re3). Biodistribution studies of Tc1­Tc4 in mice confirmed that these moderately lipophilic complexes (logDo/w = 1.95­2.32) have a favorable bioavailability. Tc3 and Tc4 presented a faster excretion, as they undergo metabolic transformations, in contrast to complexes Tc1 and Tc2. In summary, our results show that benzothiazole-containing Re(I)/(99m)Tc(I) tricarbonyl complexes stabilized by cysteamine-based (N,S,O)-chelators have potential to be further applied in the design of new tools for cancer theranostics.


Assuntos
Neoplasias/diagnóstico , Neoplasias/terapia , Compostos de Organotecnécio/química , Rênio/química , Nanomedicina Teranóstica , Humanos
4.
Adv Sci (Weinh) ; : e2403831, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976561

RESUMO

Targeted therapy remains the future of anti-cancer drug development, owing to the lack of specificity of current treatments which lead to damage in healthy normal tissues. ATR inhibitors have in recent times demonstrated promising clinical potential, and are currently being evaluated in the clinic. However, despite the considerable optimism for clinical success of these inhibitors, reports of associated normal tissues toxicities remain a concern and can compromise their utility. Here, ICT10336 is reported, a newly developed hypoxia-responsive prodrug of ATR inhibitor, AZD6738, which is hypoxia-activated and specifically releases AZD6738 only in hypoxic conditions, in vitro. This hypoxia-selective release of AZD6738 inhibited ATR activation (T1989 and S428 phosphorylation) and subsequently abrogated HIF1a-mediated adaptation of hypoxic cancers cells, thus selectively inducing cell death in 2D and 3D cancer models. Importantly, in normal tissues, ICT10336 is demonstrated to be metabolically stable and less toxic to normal cells than its active parent agent, AZD6738. In addition, ICT10336 exhibited a superior and efficient multicellular penetration ability in 3D tumor models, and selectively eradicated cells at the hypoxic core compared to AZD6738. In summary, the preclinical data demonstrate a new strategy of tumor-targeted delivery of ATR inhibitors with significant potential of enhancing the therapeutic index.

5.
Drug Discov Today ; 26(2): 577-584, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33232841

RESUMO

The duocarmycins belong to a class of agent that has fascinated scientists for over four decades. Their exquisite potency, unique mechanism of action, and efficacy in multidrug-resistant tumour models makes them attractive to medicinal chemists and drug hunters. However, despite great advances in fine-tuning biological activity through structure-activity relationship studies (SARS), no duocarmycin-based therapeutic has reached clinical approval. In this review, we provide an overview of the most promising strategies currently used and include both tumour-targeted prodrug approaches and antibody-directed technologies.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Duocarmicinas/farmacologia , Neoplasias/tratamento farmacológico , Animais , Anticorpos/imunologia , Antineoplásicos Alquilantes/química , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Duocarmicinas/administração & dosagem , Duocarmicinas/química , Humanos , Pró-Fármacos , Relação Estrutura-Atividade
6.
Nanotheranostics ; 3(4): 299-310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31723547

RESUMO

Despite considerable progress with our understanding of glioblastoma multiforme (GBM) and the precise delivery of radiotherapy, the prognosis for GBM patients is still unfavorable with tumor recurrence due to radioresistance being a major concern. We recently developed a cross-linked iron oxide nanoparticle conjugated to azademethylcolchicine (CLIO-ICT) to target and eradicate a subpopulation of quiescent cells, glioblastoma initiating cells (GICs), which could be a reason for radioresistance and tumor relapse. The purpose of our study was to investigate if CLIO-ICT has an additive therapeutic effect to enhance the response of GBMs to ionizing radiation. Methods: NSG™ mice bearing human GBMs and C57BL/6J mice bearing murine GBMs received CLIO-ICT, radiation, or combination treatment. The mice underwent pre- and post-treatment magnetic resonance imaging (MRI) scans, bioluminescence imaging (BLI), and histological analysis. Tumor nanoparticle enhancement, tumor flux, microvessel density, GIC, and apoptosis markers were compared between different groups using a one-way ANOVA and two-tailed Mann-Whitney test. Additional NSG™ mice underwent survival analyses with Kaplan-Meier curves and a log rank (Mantel-Cox) test. Results: At 2 weeks post-treatment, BLI and MRI scans revealed significant reduction in tumor size for CLIO-ICT plus radiation treated tumors compared to monotherapy or vehicle-treated tumors. Combining CLIO-ICT with radiation therapy significantly decreased microvessel density, decreased GICs, increased caspase-3 expression, and prolonged the survival of GBM-bearing mice. CLIO-ICT delivery to GBM could be monitored with MRI. and was not significantly different before and after radiation. There was no significant caspase-3 expression in normal brain at therapeutic doses of CLIO-ICT administered. Conclusion: Our data shows additive anti-tumor effects of CLIO-ICT nanoparticles in combination with radiotherapy. The combination therapy proposed here could potentially be a clinically translatable strategy for treating GBMs.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Desoxiadenosinas/uso terapêutico , Glioblastoma/tratamento farmacológico , Nanomedicina Teranóstica , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/radioterapia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Desoxiadenosinas/química , Desoxiadenosinas/farmacologia , Portadores de Fármacos/química , Feminino , Compostos Férricos/química , Glioblastoma/mortalidade , Glioblastoma/radioterapia , Humanos , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/fisiologia
7.
J Inorg Biochem ; 167: 68-79, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27907865

RESUMO

Aiming to explore alternative mechanisms of cellular uptake and cytotoxicity, we have studied a new family of copper(II) complexes (CuL1-CuL4) with bis(thiosemicarbazone) (BTSC) ligands containing pendant protonable cyclic amines (morpholine and piperidine). Herein, we report on the synthesis and characterization of these new complexes, as well as on their biological performance (cytotoxic activity, cellular uptake, protein and DNA binding), in comparison with the parental CuIIATSM (ATSM=diacetyl-bis(N4-methylthiosemicarbazonate) complex without pendant cyclic amines. The new compounds have been characterized by a range of analytical techniques including ESI-MS, IR spectroscopy, cyclic voltammetry, reverse-phase HPLC and X-ray spectroscopy. In vitro cytotoxicity studies revealed that the copper complexes are cytotoxic, unlike the corresponding ligands, with a similar potency to that of CuATSM. Unlike CuATSM, the new complexes were able to circumvent cisplatin cross-resistance. The presence of the protonable cyclic amines did not lead to an enhancement of the interaction of the complexes with human serum albumin or calf thymus DNA. However, CuL1-CuL4 showed a remarkably augmented cellular uptake compared with CuATSM, as proved by uptake, internalization and externalization studies that were performed using the radioactive congeners 64CuL1-64CuL4. The enhanced cellular uptake of CuL1-CuL4 indicates that this new family of CuIIBTSC complexes deserves to be further evaluated in the design of metallodrugs for cancer theranostics.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre , Citotoxinas , Neoplasias/tratamento farmacológico , Semicarbazidas , Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Células HeLa , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patologia , Semicarbazidas/química , Semicarbazidas/farmacologia
8.
Mol Cancer Ther ; 16(9): 1909-1921, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28659432

RESUMO

Glioblastoma (GBM) has a dismal prognosis. Evidence from preclinical tumor models and human trials indicates the role of GBM-initiating cells (GIC) in GBM drug resistance. Here, we propose a new treatment option with tumor enzyme-activatable, combined therapeutic and diagnostic (theranostic) nanoparticles, which caused specific toxicity against GBM tumor cells and GICs. The theranostic cross-linked iron oxide nanoparticles (CLIO) were conjugated to a highly potent vascular disrupting agent (ICT) and secured with a matrix-metalloproteinase (MMP-14) cleavable peptide. Treatment with CLIO-ICT disrupted tumor vasculature of MMP-14-expressing GBM, induced GIC apoptosis, and significantly impaired tumor growth. In addition, the iron core of CLIO-ICT enabled in vivo drug tracking with MR imaging. Treatment with CLIO-ICT plus temozolomide achieved tumor remission and significantly increased survival of human GBM-bearing mice by more than 2-fold compared with treatment with temozolomide alone. Thus, we present a novel therapeutic strategy with significant impact on survival and great potential for clinical translation. Mol Cancer Ther; 16(9); 1909-21. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/genética , Expressão Gênica , Glioblastoma/genética , Metaloproteinase 14 da Matriz/genética , Nanomedicina Teranóstica , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Modelos Animais de Doenças , Compostos Férricos/química , Citometria de Fluxo , Glioblastoma/diagnóstico , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Imageamento por Ressonância Magnética , Espectrometria de Massas , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Nanopartículas/química , Temozolomida , Nanomedicina Teranóstica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Steroid Biochem Mol Biol ; 137: 223-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23669457

RESUMO

Steroid receptors have demonstrated to be potentially useful biological targets for the diagnosis and therapy follow-up of hormonally responsive cancers. The over-expression of these proteins in human cancer cells as well as their binding characteristics provides a favourable mechanism for the localization of malignant tumours. The need for newer and more selective probes to non-invasively assess steroid receptor expression in hormone-responsive tumours has encouraged the synthesis and the biological evaluation of several steroidal derivatives labelled with positron and gamma emitters. The physiological effects of the steroid hormone progesterone are mediated by the progesterone receptor (PR). Since PR expression is stimulated by the oestrogen receptor (ER), PR status has been considered as a biomarker of ER activity and its value for predicting and monitoring therapeutic efficacy of hormonal therapy has been studied. Imaging of PR-expressing breast cancer patients under hormonal therapy may be advantageous, since the response to therapy can be more accurately predicted after quantification of both ER and PR status. Thus, ligands for PR targeting, although much less explored than ER ligands, have gained some importance lately as potential PET and SPECT tumour imaging agents. In this review, we present a brief survey of explored approaches for progesterone targeting using radiolabelled progestins as potential clinical probes to predict responsiveness to breast cancer therapy. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".


Assuntos
Neoplasias da Mama/terapia , Compostos Radiofarmacêuticos/metabolismo , Receptores de Progesterona/metabolismo , Esteroides/metabolismo , Animais , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Ligantes , Tomografia por Emissão de Pósitrons , Progestinas/metabolismo , Prognóstico , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Tomografia Computadorizada de Emissão de Fóton Único
10.
Carbohydr Res ; 345(1): 160-2, 2010 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-19900671

RESUMO

The first report of the formation of an acetyl disulfide sialoside during the synthesis of thioglycosides is described. This compound is a by-product in the synthesis of the 2-thioacetyl sialoside commonly used in thioglycoside preparation. Our investigations into the identification of this novel disulfide are described.


Assuntos
Dissulfetos/análise , Dissulfetos/química , Tioglicosídeos/química , Tioglicosídeos/síntese química , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética
11.
Carbohydr Res ; 344(8): 1039-45, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19368901

RESUMO

The synthesis of 1,1-thiodisaccharide trehalose analogues in good to excellent yields by a Lewis acid (BF(3).Et(2)O)-catalysed coupling of sugar per-O-acetate with thiosugar is described. The reactivity of different sugar per-O-acetates and thiosugars is explored.


Assuntos
Dissacarídeos/química , Dissacarídeos/síntese química , Trealose/análogos & derivados , Trealose/síntese química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Trealose/química
12.
Appl Radiat Isot ; 67(2): 301-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19049850

RESUMO

Three novel 17 alpha-ethynyl-Delta(6,7)-estra-3,17beta-diols and their 17 alpha-[(125)I]-iodovinyl derivatives, containing different C7-cyanoalkyl chains, were studied as potential radioligands for the estrogen receptor. The influence of the chain length on the biological behaviour of the compounds was assessed through in vitro ER binding assays of the ethynyl derivatives and breast cancer cell uptake studies of the 17 alpha-[(125)I]-iodovinyl-Delta(6,7)-estra-3,17beta-diols. A difference in alkyl chain induced a decrease in ER binding affinities of substances, however, the receptor-binding affinities (RBA) of all compounds were lower than that of estradiol itself. In addition, a non-specific cell binding was observed which is in accordance with the encountered ethynyl RBA values suggesting that the uptake is not ER mediated.


Assuntos
Estradiol/análogos & derivados , Estradiol/farmacocinética , Radioisótopos do Iodo/farmacocinética , Receptores de Estrogênio/metabolismo , Alcanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estradiol/química , Feminino , Humanos , Ligantes , Nitrilas , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Receptores de Estrogênio/análise , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA