Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1209: 339003, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35569840

RESUMO

The 2020s could be called, with little doubt, the "Mars decade". No other period in space exploration history has experienced such interest in placing orbiters, rovers and landers on the Red Planet. In 2021 alone, the Emirates' first Mars Mission (the Hope orbiter), the Chinese Tianwen-1 mission (orbiter, lander and rover), and NASA's Mars 2020 Perseverance rover reached Mars. The ExoMars mission Rosalind Franklin rover is scheduled for launch in 2022. Beyond that, several other missions are proposed or under development. Among these, MMX to Phobos and the very important Mars Sample Return can be cited. One of the key mission objectives of the Mars 2020 and ExoMars 2022 missions is the detection of traces of potential past or present life. This detection relies to a great extent on the analytical results provided by complementary spectroscopic techniques. The development of these novel instruments has been carried out in step with the analytical study of terrestrial analogue sites and materials, which serve to test the scientific capabilities of spectroscopic prototypes while providing crucial information to better understand the geological processes that could have occurred on Mars. Being directly involved in the development of three of the first Raman spectrometers to be validated for space exploration missions (Mars 2020/SuperCam, ExoMars/RLS and RAX/MMX), the present review summarizes some of the most relevant spectroscopy-based analyses of terrestrial analogues carried out over the past two decades. Therefore, the present work describes the analytical results gathered from the study of some of the most distinctive terrestrial analogues of Martian geological contexts, as well as the lessons learned mainly from ExoMars mission simulations conducted at representative analogue sites. Learning from the experience gained in the described studies, a general overview of the scientific outcome expected from the spectroscopic system developed for current and forthcoming planetary missions is provided.


Assuntos
Marte , Voo Espacial , Meio Ambiente Extraterreno/química , Análise Espectral Raman/métodos
2.
Sci Rep ; 11(1): 1461, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446849

RESUMO

In this work, the analytical research performed by the Raman Laser Spectrometer (RLS) team during the ExoFiT trial is presented. During this test, an emulator of the Rosalind Franklin rover was remotely operated at the Atacama Desert in a Mars-like sequence of scientific operations that ended with the collection and the analysis of two drilled cores. The in-situ Raman characterization of the samples was performed through a portable technology demonstrator of RLS (RAD1 system). The results were later complemented in the laboratory using a bench top RLS operation simulator and a X-Ray diffractometer (XRD). By simulating the operational and analytical constraints of the ExoMars mission, the two RLS representative instruments effectively disclosed the mineralogical composition of the drilled cores (k-feldspar, plagioclase, quartz, muscovite and rutile as main components), reaching the detection of minor phases (e.g., additional phyllosilicate and calcite) whose concentration was below the detection limit of XRD. Furthermore, Raman systems detected many organic functional groups (-C≡N, -NH2 and C-(NO2)), suggesting the presence of nitrogen-fixing microorganisms in the samples. The Raman detection of organic material in the subsurface of a Martian analogue site presenting representative environmental conditions (high UV radiation, extreme aridity), supports the idea that the RLS could play a key role in the fulfilment of the ExoMars main mission objective: to search for signs of life on Mars.

3.
Astrobiology ; 21(3): 307-322, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33252242

RESUMO

We evaluated the effectiveness of the ExoMars Raman laser spectrometer (RLS) to determine the degree of serpentinization of olivine-rich units on Mars. We selected terrestrial analogs of martian ultramafic rocks from the Leka Ophiolite Complex (LOC) and analyzed them with both laboratory and flight-like analytical instruments. We first studied the mineralogical composition of the samples (mostly olivine and serpentine) with state-of-the-art diffractometric (X-ray diffractometry [XRD]) and spectroscopic (Raman, near-infrared spectroscopy [NIR]) laboratory systems. We compared these results with those obtained using our RLS ExoMars Simulator. Our work shows that the RLS ExoMars Simulator successfully identified all major phases. Moreover, when emulating the automatic operating mode of the flight instrument, the RLS ExoMars Simulator also detected several minor compounds (pyroxene and brucite), some of which were not observed by NIR and XRD (e.g., calcite). Thereafter, we produced RLS-dedicated calibration curves (R2 between 0.9993 and 0.9995 with an uncertainty between ±3.0% and ±5.2% with a confidence interval of 95%) to estimate the relative content of olivine and serpentine in the samples. Our results show that RLS can be very effective in identifying serpentine, a scientific target of primary importance for the potential detection of biosignatures on Mars-the main objective of the ExoMars rover mission.


Assuntos
Exobiologia , Marte , Meio Ambiente Extraterreno , Compostos de Ferro , Lasers , Compostos de Magnésio , Silicatos
4.
Astrobiology ; 20(9): 1076-1096, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32856927

RESUMO

Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Complex Molecules Detector, or CMOLD. CMOLD is devoted to determining different levels of prebiotic/biotic chemical and structural targets following a chemically general approach (i.e., valid for both terrestrial and nonterrestrial life), as well as their compatibility with terrestrial life. CMOLD is based on a microfluidic block that distributes a liquid suspension sample to three instruments by using complementary technologies: (1) novel microscopic techniques for identifying ultrastructures and cell-like morphologies, (2) Raman spectroscopy for detecting universal intramolecular complexity that leads to biochemical functionality, and (3) bioaffinity-based systems (including antibodies and aptamers as capture probes) for finding life-related and nonlife-related molecular structures. We highlight our current developments to make this type of instruments flight-ready for upcoming Mars missions: the Raman spectrometer included in the science payload of the ESAs Rosalind Franklin rover (Raman Laser Spectrometer instrument) to be launched in 2022, and the biomarker detector that was included as payload in the NASA Icebreaker lander mission proposal (SOLID instrument). CMOLD is a robust solution that builds on the combination of three complementary, existing techniques to cover a wide spectrum of targets in the search for (bio)chemical complexity in the Solar System.


Assuntos
Exobiologia/instrumentação , Gelo/análise , Dispositivos Lab-On-A-Chip , Marte , Microbiologia da Água , Biomarcadores/análise , Meio Ambiente Extraterreno/química , Microscopia/instrumentação , Voo Espacial/instrumentação , Análise Espectral Raman/instrumentação
5.
Sci Rep ; 10(1): 16954, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046782

RESUMO

This work aims to evaluate whether the multi-point analysis the ExoMars Raman Laser Spectrometer (RLS) will perform on powdered samples could serve to classify ultramafic rocks on Mars. To do so, the RLS ExoMars Simulator was used to study terrestrial analogues of Martian peridotites and pyroxenites by applying the operational constraints of the Raman spectrometer onboard the Rosalind Franklin rover. Besides qualitative analysis, RLS-dedicated calibration curves have been built to estimate the relative content of olivine and pyroxenes in the samples. These semi-quantitative results, combined with a rough estimate of the concentration ratio between clino- and ortho-pyroxene mineral phases, were used to classify the terrestrial analogues. XRD data were finally employed as reference to validate Raman results. As this preliminary work suggests, ultramafic rocks on Mars could be effectively classified through the chemometric analysis of RLS data sets. After optimization, the proposed chemometric tools could be applied to the study of the volcanic geological areas detected at the ExoMars landing site (Oxia Planum), whose mineralogical composition and geological evolution have not been fully understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA