Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38519875

RESUMO

Host-associated microbial communities are shaped by myriad factors ranging from host conditions, environmental conditions and other microbes. Disentangling the ecological impact of each of these factors can be particularly difficult as many variables are correlated. Here, we leveraged earthquake-induced changes in host population structure to assess the influence of population crashes on marine microbial ecosystems. A large (7.8 magnitude) earthquake in New Zealand in 2016 led to widespread coastal uplift of up to ~6 m, sufficient to locally extirpate some intertidal southern bull kelp populations. These uplifted populations are slowly recovering, but remain at much lower densities than at nearby, less-uplifted sites. By comparing the microbial communities of the hosts from disturbed and relatively undisturbed populations using 16S rRNA gene amplicon sequencing, we observed that disturbed host populations supported higher functional, taxonomic and phylogenetic microbial beta diversity than non-disturbed host populations. Our findings shed light on microbiome ecological assembly processes, particularly highlighting that large-scale disturbances that affect host populations can dramatically influence microbiome structure. We suggest that disturbance-induced changes in host density limit the dispersal opportunities of microbes, with host community connectivity declining with the density of host populations.


Assuntos
Acidentes de Trânsito , Microbiota , Filogenia , RNA Ribossômico 16S/genética , Microbiota/genética , Nova Zelândia
2.
Ann Bot ; 133(1): 169-182, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37804485

RESUMO

BACKGROUND AND AIMS: Contrasting patterns of host and microbiome biogeography can provide insight into the drivers of microbial community assembly. Distance-decay relationships are a classic biogeographical pattern shaped by interactions between selective and non-selective processes. Joint biogeography of microbiomes and their hosts is of increasing interest owing to the potential for microbiome-facilitated adaptation. METHODS: In this study, we examine the coupled biogeography of the model macroalga Durvillaea and its microbiome using a combination of genotyping by sequencing (host) and 16S rRNA amplicon sequencing (microbiome). Alongside these approaches, we use environmental data to characterize the relationship between the microbiome, the host, and the environment. KEY RESULTS: We show that although the host and microbiome exhibit shared biogeographical structure, these arise from different processes, with host biogeography showing classic signs of geographical distance decay, but with the microbiome showing environmental distance decay. Examination of microbial subcommunities, defined by abundance, revealed that the abundance of microbes is linked to environmental selection. As microbes become less common, the dominant ecological processes shift away from selective processes and towards neutral processes. Contrary to expectations, we found that ecological drift does not promote structuring of the microbiome. CONCLUSIONS: Our results suggest that although host macroalgae exhibit a relatively 'typical' biogeographical pattern of declining similarity with increasing geographical distance, the microbiome is more variable and is shaped primarily by environmental conditions. Our findings suggest that the Baas Becking hypothesis of 'everything is everywhere, the environment selects' might be a useful hypothesis to understand the biogeography of macroalgal microbiomes. As environmental conditions change in response to anthropogenic influences, the processes structuring the microbiome of macroalgae might shift, whereas those governing the host biogeography are less likely to change. As a result, increasingly decoupled host-microbe biogeography might be observed in response to such human influences.


Assuntos
Microbiota , Humanos , RNA Ribossômico 16S/genética , Geografia
3.
Proc Natl Acad Sci U S A ; 112(33): 10497-502, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240343

RESUMO

The majority of microbial cells in global soils exist in a spectrum of dormant states. However, the metabolic processes that enable them to survive environmental challenges, such as nutrient-limitation, remain to be elucidated. In this work, we demonstrate that energy-starved cultures of Pyrinomonas methylaliphatogenes, an aerobic heterotrophic acidobacterium isolated from New Zealand volcanic soils, persist by scavenging the picomolar concentrations of H2 distributed throughout the atmosphere. Following the transition from exponential to stationary phase due to glucose limitation, the bacterium up-regulates by fourfold the expression of an eight-gene operon encoding an actinobacteria-type H2-uptake [NiFe]-hydrogenase. Whole-cells of the organism consume atmospheric H2 in a first-order kinetic process. Hydrogen oxidation occurred most rapidly under oxic conditions and was weakly associated with the cell membrane. We propose that atmospheric H2 scavenging serves as a mechanism to sustain the respiratory chain of P. methylaliphatogenes when organic electron donors are scarce. As the first observation of H2 oxidation to our knowledge in the Acidobacteria, the second most dominant soil phylum, this work identifies new sinks in the biogeochemical H2 cycle and suggests that trace gas oxidation may be a general mechanism for microbial persistence.


Assuntos
Acidobacteria/metabolismo , Gases , Microbiologia do Solo , Sequência de Aminoácidos , Atmosfera , Carbono/química , Cromatografia Gasosa , Transporte de Elétrons , Elétrons , Regulação Bacteriana da Expressão Gênica , Hidrogênio/química , Hidrogenase/metabolismo , Cinética , Dados de Sequência Molecular , Oxirredução , Oxigênio/química , Filogenia , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos , Solo/química
4.
Mol Ecol ; 26(20): 5500-5514, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28752622

RESUMO

The nitrogen (N) cycle represents one of the most well-studied systems, yet the taxonomic diversity of the organisms that contribute to it is mostly unknown, or linked to poorly characterized microbial groups. While new information has allowed functional groups to be refined, they still rely on a priori knowledge of enzymes involved and the assumption of functional conservation, with little connection to the role the transformations, plays for specific organisms. Here, we use soil microcosms to test the impact of N deposition on prokaryotic communities. By combining chemical, genomic and transcriptomic analysis, we are able to identify and link changes in community structure to specific organisms catalysing given chemical reactions. Urea deposition led to a decrease in prokaryotic richness, and a shift in community composition. This was driven by replacement of stable native populations, which utilize energy from N-linked redox reactions for physiological maintenance, with fast responding populations that use this energy for growth. This model can be used to predict response to N disturbances and allows us to identify putative life strategies of different functional and taxonomic groups, thus providing insights into how they persist in ecosystems by niche differentiation.


Assuntos
Bactérias/metabolismo , Ciclo do Nitrogênio , Nitrogênio/química , Microbiologia do Solo , Solo/química , Bactérias/classificação , Ecossistema , Fertilizantes , Concentração de Íons de Hidrogênio , Irlanda , Modelos Biológicos , Óperon , Oxirredução , RNA Ribossômico 16S/isolamento & purificação , Ureia/química
5.
BMC Genomics ; 17: 356, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184979

RESUMO

BACKGROUND: CRISPR (clustered regularly interspaced short palindromic repeats) RNAs provide the specificity for noncoding RNA-guided adaptive immune defence systems in prokaryotes. CRISPR arrays consist of repeat sequences separated by specific spacer sequences. CRISPR arrays have previously been identified in a large proportion of prokaryotic genomes. However, currently available detection algorithms do not utilise recently discovered features regarding CRISPR loci. RESULTS: We have developed a new approach to automatically detect, predict and interactively refine CRISPR arrays. It is available as a web program and command line from bioanalysis.otago.ac.nz/CRISPRDetect. CRISPRDetect discovers putative arrays, extends the array by detecting additional variant repeats, corrects the direction of arrays, refines the repeat/spacer boundaries, and annotates different types of sequence variations (e.g. insertion/deletion) in near identical repeats. Due to these features, CRISPRDetect has significant advantages when compared to existing identification tools. As well as further support for small medium and large repeats, CRISPRDetect identified a class of arrays with 'extra-large' repeats in bacteria (repeats 44-50 nt). The CRISPRDetect output is integrated with other analysis tools. Notably, the predicted spacers can be directly utilised by CRISPRTarget to predict targets. CONCLUSION: CRISPRDetect enables more accurate detection of arrays and spacers and its gff output is suitable for inclusion in genome annotation pipelines and visualisation. It has been used to analyse all complete bacterial and archaeal reference genomes.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Software , Algoritmos , Bactérias/genética , DNA Intergênico , Bases de Dados de Ácidos Nucleicos , Genoma , Genômica/métodos , Mutagênese Insercional , Mutação , Células Procarióticas/metabolismo , Deleção de Sequência , Sequências de Repetição em Tandem , Interface Usuário-Computador , Fluxo de Trabalho
6.
Appl Environ Microbiol ; 81(4): 1190-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25501483

RESUMO

We have known for 40 years that soils can consume the trace amounts of molecular hydrogen (H2) found in the Earth's atmosphere.This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of Actinobacteria, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric H2 to the reduction of ambient O2. A combination of genetic, biochemical, and phenotypic studies suggest that these organisms primarily use this fuel source to sustain electron input into the respiratory chain during energy starvation. This process is mediated by a specialized enzyme, the group 5 [NiFe]-hydrogenase, which is unusual for its high affinity, oxygen insensitivity, and thermostability. Atmospheric hydrogen scavenging is a particularly dependable mode of energy generation, given both the ubiquity of the substrate and the stress tolerance of its catalyst. This minireview summarizes the recent progress in understanding how and why certain organisms scavenge atmospheric H2. In addition, it provides insight into the wider significance of hydrogen scavenging in global H2 cycling and soil microbial ecology.


Assuntos
Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Actinobacteria/enzimologia , Actinobacteria/genética , Microbiologia do Ar , Atmosfera/química , Proteínas de Bactérias/genética , Ecossistema , Hidrogenase/genética
7.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38857884

RESUMO

Host-associated microbial communities are shaped by host migratory movements. These movements can have contrasting impacts on microbiota, and understanding such patterns can provide insight into the ecological processes that contribute to community diversity. Furthermore, long-distance movements to new environments are anticipated to occur with increasing frequency due to host distribution shifts resulting from climate change. Understanding how hosts transport their microbiota with them could be of importance when examining biological invasions. Although microbial community shifts are well-documented, the underlying mechanisms that lead to the restructuring of these communities remain relatively unexplored. Using literature and ecological simulations, we develop a framework to elucidate the major factors that lead to community change. We group host movements into two types-regular (repeated/cyclical migratory movements, as found in many birds and mammals) and irregular (stochastic/infrequent movements that do not occur on a cyclical basis, as found in many insects and plants). Ecological simulations and prior research suggest that movement type and frequency, alongside environmental exposure (e.g. internal/external microbiota) are key considerations for understanding movement-associated community changes. From our framework, we derive a series of testable hypotheses, and suggest means to test them, to facilitate future research into host movement and microbial community dynamics.


Assuntos
Microbiota , Animais , Migração Animal , Biodiversidade , Aves/microbiologia , Mudança Climática , Interações entre Hospedeiro e Microrganismos , Mamíferos/microbiologia
8.
Nat Commun ; 14(1): 425, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732522

RESUMO

The Southern Ocean contributes substantially to the global biological carbon pump (BCP). Salps in the Southern Ocean, in particular Salpa thompsoni, are important grazers that produce large, fast-sinking fecal pellets. Here, we quantify the salp bloom impacts on microbial dynamics and the BCP, by contrasting locations differing in salp bloom presence/absence. Salp blooms coincide with phytoplankton dominated by diatoms or prymnesiophytes, depending on water mass characteristics. Their grazing is comparable to microzooplankton during their early bloom, resulting in a decrease of ~1/3 of primary production, and negative phytoplankton rates of change are associated with all salp locations. Particle export in salp waters is always higher, ranging 2- to 8- fold (average 5-fold), compared to non-salp locations, exporting up to 46% of primary production out of the euphotic zone. BCP efficiency increases from 5 to 28% in salp areas, which is among the highest recorded in the global ocean.


Assuntos
Diatomáceas , Haptófitas , Carbono , Fitoplâncton , Oceanos e Mares , Água do Mar
9.
Nat Microbiol ; 8(6): 1137-1148, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37095175

RESUMO

The deep ocean (>200 m depth) is the largest habitat on Earth. Recent evidence suggests sulfur oxidation could be a major energy source for deep ocean microbes. However, the global relevance and the identity of the major players in sulfur oxidation in the oxygenated deep-water column remain elusive. Here we combined single-cell genomics, community metagenomics, metatranscriptomics and single-cell activity measurements on samples collected beneath the Ross Ice Shelf in Antarctica to characterize a ubiquitous mixotrophic bacterial group (UBA868) that dominates expression of RuBisCO genes and of key sulfur oxidation genes. Further analyses of the gene libraries from the 'Tara Oceans' and 'Malaspina' expeditions confirmed the ubiquitous distribution and global relevance of this enigmatic group in the expression of sulfur oxidation and dissolved inorganic carbon fixation genes across the global mesopelagic ocean. Our study also underscores the unrecognized importance of mixotrophic microbes in the biogeochemical cycles of the deep ocean.


Assuntos
Ecossistema , Genômica , Oceanos e Mares , Metagenômica , Enxofre/metabolismo
10.
Nat Microbiol ; 8(4): 581-595, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36747116

RESUMO

Molecular hydrogen (H2) is an abundant and readily accessible energy source in marine systems, but it remains unknown whether marine microbial communities consume this gas. Here we use a suite of approaches to show that marine bacteria consume H2 to support growth. Genes for H2-uptake hydrogenases are prevalent in global ocean metagenomes, highly expressed in metatranscriptomes and found across eight bacterial phyla. Capacity for H2 oxidation increases with depth and decreases with oxygen concentration, suggesting that H2 is important in environments with low primary production. Biogeochemical measurements of tropical, temperate and subantarctic waters, and axenic cultures show that marine microbes consume H2 supplied at environmentally relevant concentrations, yielding enough cell-specific power to support growth in bacteria with low energy requirements. Conversely, our results indicate that oxidation of carbon monoxide (CO) primarily supports survival. Altogether, H2 is a notable energy source for marine bacteria and may influence oceanic ecology and biogeochemistry.


Assuntos
Bactérias , Água do Mar , Bactérias/genética , Água do Mar/microbiologia , Hidrogênio , Oxirredução , Oceanos e Mares
11.
ISME J ; 16(9): 2198-2212, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35739297

RESUMO

Marine microbial communities rely on dissolved organic phosphorus (DOP) remineralisation to meet phosphorus (P) requirements. We extensively surveyed the genomic and metagenomic distribution of genes directing phosphonate biosynthesis, substrate-specific catabolism of 2-aminoethylphosphonate (2-AEP, the most abundant phosphonate in the marine environment), and broad-specificity catabolism of phosphonates by the C-P lyase (including methylphosphonate, a major source of methane). We developed comprehensive enzyme databases by curating publicly available sequences and then screened metagenomes from TARA Oceans and Munida Microbial Observatory Time Series (MOTS) to assess spatial and seasonal variation in phosphonate metabolism pathways. Phosphonate cycling genes were encoded in diverse gene clusters by 35 marine bacterial and archaeal classes. More than 65% of marine phosphonate cycling genes mapped to Proteobacteria with production demonstrating wider taxonomic diversity than catabolism. Hydrolysis of 2-AEP was the dominant phosphonate catabolism strategy, enabling microbes to assimilate carbon and nitrogen alongside P. Genes for broad-specificity catabolism by the C-P lyase were far less widespread, though enriched in the extremely P-deplete environment of the Mediterranean Sea. Phosphonate cycling genes were abundant in marine metagenomes, particularly from the mesopelagic zone and winter sampling dates. Disparity between prevalence of substrate-specific and broad-specificity catabolism may be due to higher resource expenditure from the cell to build and retain the C-P lyase. This study is the most comprehensive metagenomic survey of marine microbial phosphonate cycling to date and provides curated databases for 14 genes involved in phosphonate cycling.


Assuntos
Bactérias , Organofosfonatos , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Mar Mediterrâneo , Organofosfonatos/metabolismo , Estações do Ano
12.
Curr Biol ; 32(1): 220-227.e5, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758284

RESUMO

CRISPR-Cas are adaptive immune systems that protect their hosts against viruses and other parasitic mobile genetic elements.1 Although widely distributed among prokaryotic taxa, CRISPR-Cas systems are not ubiquitous.2-4 Like most defense-system genes, CRISPR-Cas are frequently lost and gained, suggesting advantages are specific to particular environmental conditions.5 Selection from viruses is assumed to drive the acquisition and maintenance of these immune systems in nature, and both theory6-8 and experiments have identified phage density and diversity as key fitness determinants.9,10 However, these approaches lack the biological complexity inherent in nature. Here, we exploit metagenomic data from 324 samples across diverse ecosystems to analyze CRISPR abundance in natural environments. For each metagenome, we quantified viral abundance and diversity to test whether these contribute to CRISPR-Cas abundance across ecosystems. We find a strong positive association between CRISPR-Cas abundance and viral abundance. In addition, when controlling for differences in viral abundance, CRISPR-Cas systems are more abundant when viral diversity is low, suggesting that such adaptive immune systems may offer limited protection when required to target a diverse viral community. CRISPR-Cas abundance also differed among environments, with environmental classification explaining roughly a quarter of the variation in CRISPR-Cas relative abundance. The relationships between CRISPR-Cas abundance, viral abundance, and viral diversity are broadly consistent across environments, providing robust evidence from natural ecosystems that supports predictions of when CRISPR is beneficial. These results indicate that viral abundance and diversity are major ecological factors that drive the selection and maintenance of CRISPR-Cas in microbial ecosystems.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Bacteriófagos/genética , Ecossistema , Metagenômica , Prevalência
13.
Nat Commun ; 13(1): 117, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013291

RESUMO

Throughout coastal Antarctica, ice shelves separate oceanic waters from sunlight by hundreds of meters of ice. Historical studies have detected activity of nitrifying microorganisms in oceanic cavities below permanent ice shelves. However, little is known about the microbial composition and pathways that mediate these activities. In this study, we profiled the microbial communities beneath the Ross Ice Shelf using a multi-omics approach. Overall, beneath-shelf microorganisms are of comparable abundance and diversity, though distinct composition, relative to those in the open meso- and bathypelagic ocean. Production of new organic carbon is likely driven by aerobic lithoautotrophic archaea and bacteria that can use ammonium, nitrite, and sulfur compounds as electron donors. Also enriched were aerobic organoheterotrophic bacteria capable of degrading complex organic carbon substrates, likely derived from in situ fixed carbon and potentially refractory organic matter laterally advected by the below-shelf waters. Altogether, these findings uncover a taxonomically distinct microbial community potentially adapted to a highly oligotrophic marine environment and suggest that ocean cavity waters are primarily chemosynthetically-driven systems.


Assuntos
Archaea/genética , Bactérias/genética , Camada de Gelo/microbiologia , Microbiota/genética , Água do Mar/microbiologia , Regiões Antárticas , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Ciclo do Carbono/genética , Sedimentos Geológicos/microbiologia , Filogenia , RNA Ribossômico 16S/genética
14.
Appl Environ Microbiol ; 77(1): 108-13, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21057015

RESUMO

A novel microcalorimetric approach was used to analyze the responses of a metal-tolerant soil bacterium (Pseudomonas putida strain KT2440) to metal resistance gene deletions in cadmium-amended media. As hypothesized, under cadmium stress, the wild-type strain benefited from the resistance genes by entering the exponential growth phase earlier than two knockout strains. In the absence of cadmium, strain KT1, carrying a deletion in the main component (czcA1) of a Cd/Zn chemiosmotic efflux transporter (CzcCBA1), grew more efficiently than the wild type and released ∼700 kJ (per mole of biomass carbon) less heat than the wild-type strain, showing the energetic cost of maintaining CzcCBA1 in the absence of cadmium. A second mutant strain (KT4) carrying a different gene deletion, ΔcadA2, which encodes the main Cd/Pb efflux transporter (a P-type ATPase), did not survive beyond moderate cadmium concentrations and exhibited a decreased growth yield in the absence of cadmium. Therefore, CadA2 plays an essential role in cadmium resistance and perhaps serves an additional function. The results of this study provide direct evidence that heavy metal cation efflux mechanisms facilitate shorter lag phases in the presence of metals and that the maintenance and expression of tolerance genes carry quantifiable energetic costs and benefits.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Calorimetria/métodos , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/crescimento & desenvolvimento , Deleção de Genes , Genes Bacterianos , Proteínas de Membrana Transportadoras/genética
15.
ISME J ; 15(4): 1085-1097, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230267

RESUMO

Bottom-up selection has an important role in microbial community assembly but is unable to account for all observed variance. Other processes like top-down selection (e.g., predation) may be partially responsible for the unexplained variance. However, top-down processes and their interaction with bottom-up selective pressures often remain unexplored. We utilised an in situ marine biofilm model system to test the effects of bottom-up (i.e., substrate properties) and top-down (i.e., large predator exclusion via 100 µm mesh) selective pressures on community assembly over time (56 days). Prokaryotic and eukaryotic community compositions were monitored using 16 S and 18 S rRNA gene amplicon sequencing. Higher compositional variance was explained by growth substrate in early successional stages, but as biofilms mature, top-down predation becomes progressively more important. Wooden substrates promoted heterotrophic growth, whereas inert substrates' (i.e., plastic, glass, tile) lack of degradable material selected for autotrophs. Early wood communities contained more mixotrophs and heterotrophs (e.g., the total abundance of Proteobacteria and Euglenozoa was 34% and 41% greater within wood compared to inert substrates). Inert substrates instead showed twice the autotrophic abundance (e.g., cyanobacteria and ochrophyta made up 37% and 10% more of the total abundance within inert substrates than in wood). Late native (non-enclosed) communities were mostly dominated by autotrophs across all substrates, whereas high heterotrophic abundance characterised enclosed communities. Late communities were primarily under top-down control, where large predators successively pruned heterotrophs. Integrating a top-down control increased explainable variance by 7-52%, leading to increased understanding of the underlying ecological processes guiding multitrophic community assembly and successional dynamics.


Assuntos
Microbiota , Animais , Biofilmes , Eucariotos/genética , Comportamento Predatório , Madeira
16.
Sci Rep ; 11(1): 19303, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588501

RESUMO

Fjords are semi-enclosed marine systems with unique physical conditions that influence microbial community composition and structure. Pronounced organic matter and physical condition gradients within fjords provide a natural laboratory for the study of changes in microbial community structure and metabolic potential in response to environmental conditions. Photosynthetic production in euphotic zones sustains deeper aphotic microbial activity via organic matter sinking, augmented by large terrestrial inputs. Previous studies do not consider both prokaryotic and eukaryotic communities when linking metabolic potential and activity, community composition, and environmental gradients. To address this gap we profiled microbial functional potential (Biolog Ecoplates), bacterial abundance, heterotrophic production (3H-Leucine incorporation), and prokaryotic/eukaryotic community composition (16S and 18S rRNA amplicon gene sequencing). Similar factors shaped metabolic potential, activity and community (prokaryotic and eukaryotic) composition across surface/near surface sites. However, increased metabolic diversity at near bottom (aphotic) sites reflected an organic matter influence from sediments. Photosynthetically produced particulate organic matter shaped the upper water column community composition and metabolic potential. In contrast, microbial activity at deeper aphotic waters were strongly influenced by other organic matter input than sinking marine snow (e.g. sediment resuspension of benthic organic matter, remineralisation of terrestrially derived organic matter, etc.), severing the link between community structure and metabolic potential. Taken together, different organic matter sources shape microbial activity, but not community composition, in New Zealand fjords.


Assuntos
Archaea/genética , Bactérias/genética , Microbiota/genética , Água do Mar/microbiologia , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , DNA Arqueal/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Estuários , Sedimentos Geológicos , Nova Zelândia , Filogenia , RNA Ribossômico 16S/genética
17.
Mar Environ Res ; 167: 105291, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33691257

RESUMO

Ocean acidification (OA) can negatively affect early-life stages of marine organisms, with the key processes of larval settlement and metamorphosis potentially vulnerable to reduced seawater pH. Settlement success depends strongly on suitable substrates and environmental cues, with marine biofilms as key settlement inducers for a range of marine invertebrate larvae. This study experimentally investigated (1) how seawater pH determines growth and community composition of marine biofilms, and (2) whether marine biofilms developed under different pH conditions can alter settlement success in the New Zealand serpulid polychaete Galeolaria hystrix. Biofilms were developed under six pH(T) treatments (spanning from 7.0 to 8.1 [ambient]) in a flow-through system for up to 14 months. Biofilms of different ages (7, 10 and 14 months) were used to assay successful settlement of competent G. hystrix larvae reared under ambient conditions. Biofilm microbiomes were characterized through amplicon sequencing of the small subunit ribosomal rRNA gene (16S and 18S). Biofilm community composition was stable over time within each pH treatment and biofilm age did not affect larval settlement selectivity. Seawater pH treatment strongly influenced biofilm community composition, as well as subsequent settlement success when biofilms were presented to competent Galeolaria larvae. Exposure to biofilms incubated under OA-treatments caused a decrease in larval settlement of up to 40% compared to the ambient treatments. We observed a decrease in settlement on biofilms relative to ambient pH for slides incubated at pH 7.9 and 7.7. This trend was reversed at pH 7.4, resulting in high settlement, comparable to ambient biofilms. Settlement decreased on biofilms from pH 7.2, and no settlement was observed on biofilms from pH 7.0. For the first time, we show that long-term incubation of marine biofilms under a wide range of reduced seawater pH treatments can alter marine biofilms in such a way that settlement success in marine invertebrates can be compromised.


Assuntos
Poliquetos , Água do Mar , Animais , Biofilmes , Concentração de Íons de Hidrogênio , Larva
18.
Sci Total Environ ; 779: 146318, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030223

RESUMO

Nitrous oxide (N2O) is a strong greenhouse gas produced by biotic/abiotic processes directly linked to both fungal and prokaryotic communities that produce, consume or create conditions leading to its emission. In soils exposed to nitrogen (N) in the form of urea, an ecological succession is triggered resulting in a dynamic turnover of microbial populations. However, knowledge of the mechanisms controlling this succession and the repercussions for N2O emissions remain incomplete. Here, we monitored N2O production and fungal/prokaryotic community changes (via 16S and 18S amplicon sequencing) in soil microcosms exposed to urea. Contributions of microbes to emissions were determined using biological inhibitors. Results confirmed that urea leads to shifts in microbial community assemblages by selecting for certain microbial groups (fast growers) as dictated through life history strategies. Urea reduced overall community diversity by conferring dominance to specific groups at different stages in the succession. The diversity lost under urea was recovered with inhibitor addition through the removal of groups that were actively growing under urea indicating that species replacement is mediated in part by competition. Results also identified fungi as significant contributors to N2O emissions, and demonstrate that dominant fungal populations are consistently replaced at different stages of the succession. These successions were affected by addition of inhibitors which resulted in strong decreases in N2O emissions, suggesting that fungal contributions to N2O emissions are larger than that of prokaryotes.


Assuntos
Gases de Efeito Estufa , Desnitrificação , Nitrogênio/análise , Óxido Nitroso/análise , Solo , Microbiologia do Solo
19.
Front Microbiol ; 12: 786156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35237240

RESUMO

Agriculture is fundamental for food production, and microbiomes support agriculture through multiple essential ecosystem services. Despite the importance of individual (i.e., niche specific) agricultural microbiomes, microbiome interactions across niches are not well-understood. To observe the linkages between nearby agricultural microbiomes, multiple approaches (16S, 18S, and ITS) were used to inspect a broad coverage of niche microbiomes. Here we examined agricultural microbiome responses to 3 different nitrogen treatments (0, 150, and 300 kg/ha/yr) in soil and tracked linked responses in other neighbouring farm niches (rumen, faecal, white clover leaf, white clover root, rye grass leaf, and rye grass root). Nitrogen treatment had little impact on microbiome structure or composition across niches, but drastically reduced the microbiome network connectivity in soil. Networks of 16S microbiomes were the most sensitive to nitrogen treatment across amplicons, where ITS microbiome networks were the least responsive. Nitrogen enrichment in soil altered soil and the neighbouring microbiome networks, supporting our hypotheses that nitrogen treatment in soil altered microbiomes in soil and in nearby niches. This suggested that agricultural microbiomes across farm niches are ecologically interactive. Therefore, knock-on effects on neighbouring niches should be considered when management is applied to a single agricultural niche.

20.
Environ Microbiol Rep ; 13(3): 401-406, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33870657

RESUMO

Microbial rhodopsins are simple light-harvesting complexes that, unlike chlorophyll photosystems, have no iron requirements for their synthesis and phototrophic functions. Here, we report the environmental concentrations of rhodopsin along the Subtropical Frontal Zone off New Zealand, where Subtropical waters encounter the iron-limited Subantarctic High Nutrient Low Chlorophyll (HNLC) region. Rhodopsin concentrations were highest in HNLC waters where chlorophyll-a concentrations were lowest. Furthermore, while the ratio of rhodopsin to chlorophyll-a photosystems was on average 20 along the transect, this ratio increased to over 60 in HNLC waters. We further show that microbial rhodopsins are abundant in both picoplankton (0.2-3 µm) and in the larger (>3 µm) size fractions of the microbial community containing eukaryotic plankton and/or particle-attached prokaryotes. These findings suggest that rhodopsin phototrophy could be critical for microbial plankton to adapt to resource-limiting environments where photosynthesis and possibly cellular respiration are impaired.


Assuntos
Clorofila , Rodopsinas Microbianas , Nutrientes , Fotossíntese , Plâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA