Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur Radiol ; 30(12): 6770-6778, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32591888

RESUMO

OBJECTIVE: Lombardy (Italy) was the epicentre of the COVID-19 pandemic in March 2020. The healthcare system suffered from a shortage of ICU beds and oxygenation support devices. In our Institution, most patients received chest CT at admission, only interpreted visually. Given the proven value of quantitative CT analysis (QCT) in the setting of ARDS, we tested QCT as an outcome predictor for COVID-19. METHODS: We performed a single-centre retrospective study on COVID-19 patients hospitalised from January 25, 2020, to April 28, 2020, who received CT at admission prompted by respiratory symptoms such as dyspnea or desaturation. QCT was performed using a semi-automated method (3D Slicer). Lungs were divided by Hounsfield unit intervals. Compromised lung (%CL) volume was the sum of poorly and non-aerated volumes (- 500, 100 HU). We collected patient's clinical data including oxygenation support throughout hospitalisation. RESULTS: Two hundred twenty-two patients (163 males, median age 66, IQR 54-6) were included; 75% received oxygenation support (20% intubation rate). Compromised lung volume was the most accurate outcome predictor (logistic regression, p < 0.001). %CL values in the 6-23% range increased risk of oxygenation support; values above 23% were at risk for intubation. %CL showed a negative correlation with PaO2/FiO2 ratio (p < 0.001) and was a risk factor for in-hospital mortality (p < 0.001). CONCLUSIONS: QCT provides new metrics of COVID-19. The compromised lung volume is accurate in predicting the need for oxygenation support and intubation and is a significant risk factor for in-hospital death. QCT may serve as a tool for the triaging process of COVID-19. KEY POINTS: • Quantitative computer-aided analysis of chest CT (QCT) provides new metrics of COVID-19. • The compromised lung volume measured in the - 500, 100 HU interval predicts oxygenation support and intubation and is a risk factor for in-hospital death. • Compromised lung values in the 6-23% range prompt oxygenation therapy; values above 23% increase the need for intubation.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico , Intubação Intratraqueal/métodos , Pulmão/diagnóstico por imagem , Oxigenoterapia/métodos , Pneumonia Viral/diagnóstico , Tomografia Computadorizada por Raios X/métodos , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Feminino , Mortalidade Hospitalar , Hospitalização , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Prognóstico , Estudos Retrospectivos , SARS-CoV-2
2.
J Clin Med ; 13(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39274393

RESUMO

Background: The growth of arthroplasty procedures requires innovative strategies to reduce inpatients' hospital length of stay (LOS). This study aims to develop a machine learning prediction model that may aid in predicting LOS after hip or knee arthroplasties. Methods: A collection of all the clinical notes of patients who underwent elective primary or revision arthroplasty from 1 January 2019 to 31 December 2019 was performed. The hospitalization was classified as "short LOS" if it was less than or equal to 6 days and "long LOS" if it was greater than 7 days. Clinical data from pre-operative laboratory analysis, vital parameters, and demographic characteristics of patients were screened. Final data were used to train a logistic regression model with the aim of predicting short or long LOS. Results: The final dataset was composed of 1517 patients (795 "long LOS", 722 "short LOS", p = 0.3196) with a total of 1541 hospital admissions (729 "long LOS", 812 "short LOS", p < 0.001). The complete model had a prediction efficacy of 78.99% (AUC 0.7899). Conclusions: Machine learning may facilitate day-by-day clinical practice determination of which patients are suitable for a shorter LOS and which for a longer LOS, in which a cautious approach could be recommended.

3.
JCO Clin Cancer Inform ; 8: e2400008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38875514

RESUMO

PURPOSE: Rare cancers constitute over 20% of human neoplasms, often affecting patients with unmet medical needs. The development of effective classification and prognostication systems is crucial to improve the decision-making process and drive innovative treatment strategies. We have created and implemented MOSAIC, an artificial intelligence (AI)-based framework designed for multimodal analysis, classification, and personalized prognostic assessment in rare cancers. Clinical validation was performed on myelodysplastic syndrome (MDS), a rare hematologic cancer with clinical and genomic heterogeneities. METHODS: We analyzed 4,427 patients with MDS divided into training and validation cohorts. Deep learning methods were applied to integrate and impute clinical/genomic features. Clustering was performed by combining Uniform Manifold Approximation and Projection for Dimension Reduction + Hierarchical Density-Based Spatial Clustering of Applications with Noise (UMAP + HDBSCAN) methods, compared with the conventional Hierarchical Dirichlet Process (HDP). Linear and AI-based nonlinear approaches were compared for survival prediction. Explainable AI (Shapley Additive Explanations approach [SHAP]) and federated learning were used to improve the interpretation and the performance of the clinical models, integrating them into distributed infrastructure. RESULTS: UMAP + HDBSCAN clustering obtained a more granular patient stratification, achieving a higher average silhouette coefficient (0.16) with respect to HDP (0.01) and higher balanced accuracy in cluster classification by Random Forest (92.7% ± 1.3% and 85.8% ± 0.8%). AI methods for survival prediction outperform conventional statistical techniques and the reference prognostic tool for MDS. Nonlinear Gradient Boosting Survival stands in the internal (Concordance-Index [C-Index], 0.77; SD, 0.01) and external validation (C-Index, 0.74; SD, 0.02). SHAP analysis revealed that similar features drove patients' subgroups and outcomes in both training and validation cohorts. Federated implementation improved the accuracy of developed models. CONCLUSION: MOSAIC provides an explainable and robust framework to optimize classification and prognostic assessment of rare cancers. AI-based approaches demonstrated superior accuracy in capturing genomic similarities and providing individual prognostic information compared with conventional statistical methods. Its federated implementation ensures broad clinical application, guaranteeing high performance and data protection.


Assuntos
Inteligência Artificial , Medicina de Precisão , Humanos , Prognóstico , Medicina de Precisão/métodos , Feminino , Doenças Raras/classificação , Doenças Raras/genética , Doenças Raras/diagnóstico , Masculino , Aprendizado Profundo , Neoplasias/classificação , Neoplasias/genética , Neoplasias/diagnóstico , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/classificação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Algoritmos , Pessoa de Meia-Idade , Idoso , Análise por Conglomerados
4.
Front Med (Lausanne) ; 10: 1179240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37387783

RESUMO

Background: The impact of a multidisciplinary management of rheumatoid arthritis (RA), psoriatic arthritis (PsA), and psoriasis on systemic glucocorticoids or innovative treatments remains unknown. Rule-based natural language processing and text extraction help to manage large datasets of unstructured information and provide insights into the profile of treatment choices. Methods: We obtained structured information from text data of outpatient visits between 2017 and 2022 using regular expressions (RegEx) to define elastic search patterns and to consider only affirmative citation of diseases or prescribed therapy by detecting negations. Care processes were described by binary flags which express the presence of RA, PsA and psoriasis and the prescription of glucocorticoids and biologics or small molecules in each cases. Logistic regression analyses were used to train the classifier to predict outcomes using the number of visits and the other specialist visits as the main variables. Results: We identified 1743 patients with RA, 1359 with PsA and 2,287 with psoriasis, accounting for 5,677, 4,468 and 7,770 outpatient visits, respectively. Among these, 25% of RA, 32% of PsA and 25% of psoriasis cases received biologics or small molecules, while 49% of RA, 28% of PsA, and 40% of psoriasis cases received glucocorticoids. Patients evaluated also by other specialists were treated more frequently with glucocorticoids (70% vs. 49% for RA, 60% vs. 28% for PsA, 51% vs. 40% for psoriasis; p < 0.001) as well as with biologics/small molecules (49% vs. 25% for RA, 64% vs. 32% in PsA; 51% vs. 25% for psoriasis; p < 0.001) compared to cases seen only by the main specialist. Conclusion: Patients with RA, PsA, or psoriasis undergoing multiple evaluations are more likely to receive innovative treatments or glucocorticoids, possibly reflecting more complex cases.

5.
Updates Surg ; 75(6): 1519-1531, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37017906

RESUMO

The preoperative risk assessment of liver resections (LR) is still an open issue. Liver parenchyma characteristics influence the outcome but cannot be adequately evaluated in the preoperative setting. The present study aims to elucidate the contribution of the radiomic analysis of non-tumoral parenchyma to the prediction of complications after elective LR. All consecutive patients undergoing LR between 2017 and 2021 having a preoperative computed tomography (CT) were included. Patients with associated biliary/colorectal resection were excluded. Radiomic features were extracted from a virtual biopsy of non-tumoral liver parenchyma (a 2 mL cylinder) outlined in the portal phase of preoperative CT. Data were internally validated. Overall, 378 patients were analyzed (245 males/133 females-median age 67 years-39 cirrhotics). Radiomics increased the performances of the preoperative clinical models for both liver dysfunction (at internal validaton, AUC = 0.727 vs. 0.678) and bile leak (AUC = 0.744 vs. 0.614). The final predictive model combined clinical and radiomic variables: for bile leak, segment 1 resection, exposure of Glissonean pedicles, HU-related indices, NGLDM_Contrast, GLRLM indices, and GLZLM_ZLNU; for liver dysfunction, cirrhosis, liver function tests, major hepatectomy, segment 1 resection, and NGLDM_Contrast. The combined clinical-radiomic model for bile leak based on preoperative data performed even better than the model including the intraoperative data (AUC = 0.629). The textural features extracted from a virtual biopsy of non-tumoral liver parenchyma improved the prediction of postoperative liver dysfunction and bile leak, implementing information given by standard clinical data. Radiomics should become part of the preoperative assessment of candidates to LR.


Assuntos
Hepatectomia , Hepatopatias , Masculino , Feminino , Humanos , Idoso , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Hepatopatias/cirurgia , Cirrose Hepática/cirurgia , Biópsia , Estudos Retrospectivos
6.
JCO Clin Cancer Inform ; 7: e2300021, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37390377

RESUMO

PURPOSE: Synthetic data are artificial data generated without including any real patient information by an algorithm trained to learn the characteristics of a real source data set and became widely used to accelerate research in life sciences. We aimed to (1) apply generative artificial intelligence to build synthetic data in different hematologic neoplasms; (2) develop a synthetic validation framework to assess data fidelity and privacy preservability; and (3) test the capability of synthetic data to accelerate clinical/translational research in hematology. METHODS: A conditional generative adversarial network architecture was implemented to generate synthetic data. Use cases were myelodysplastic syndromes (MDS) and AML: 7,133 patients were included. A fully explainable validation framework was created to assess fidelity and privacy preservability of synthetic data. RESULTS: We generated MDS/AML synthetic cohorts (including information on clinical features, genomics, treatment, and outcomes) with high fidelity and privacy performances. This technology allowed resolution of lack/incomplete information and data augmentation. We then assessed the potential value of synthetic data on accelerating research in hematology. Starting from 944 patients with MDS available since 2014, we generated a 300% augmented synthetic cohort and anticipated the development of molecular classification and molecular scoring system obtained many years later from 2,043 to 2,957 real patients, respectively. Moreover, starting from 187 MDS treated with luspatercept into a clinical trial, we generated a synthetic cohort that recapitulated all the clinical end points of the study. Finally, we developed a website to enable clinicians generating high-quality synthetic data from an existing biobank of real patients. CONCLUSION: Synthetic data mimic real clinical-genomic features and outcomes, and anonymize patient information. The implementation of this technology allows to increase the scientific use and value of real data, thus accelerating precision medicine in hematology and the conduction of clinical trials.


Assuntos
Hematologia , Leucemia Mieloide Aguda , Humanos , Medicina de Precisão , Inteligência Artificial , Algoritmos
7.
Artigo em Inglês | MEDLINE | ID: mdl-36430014

RESUMO

BACKGROUND: The possible benefits of using semantic language models in the early diagnosis of major ischemic stroke (MIS) based on artificial intelligence (AI) are still underestimated. The present study strives to assay the feasibility of the word2vec word embedding-based model in decreasing the risk of false negatives during the triage of patients with suspected MIS in the emergency department (ED). METHODS: The main ICD-9 codes related to MIS were used for the 7-year retrospective data collection of patients managed at the ED with a suspected diagnosis of stroke. The data underwent "tokenization" and "lemmatization". The word2vec word-embedding algorithm was used for text data vectorization. RESULTS: Out of 648 MIS, the word2vec algorithm successfully identified 83.9% of them, with an area under the curve of 93.1%. CONCLUSIONS: Natural language processing (NLP)-based models in triage have the potential to improve the early detection of MIS and to actively support the clinical staff.


Assuntos
Inteligência Artificial , AVC Isquêmico , Humanos , Triagem , Estudos de Viabilidade , Estudos Retrospectivos
8.
Clin Transl Allergy ; 12(6): e12144, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35702725

RESUMO

Background: Comorbidities are common in chronic inflammatory conditions, requiring multidisciplinary treatment approach. Understanding the link between a single disease and its comorbidities is important for appropriate treatment and management. We evaluate the ability of an NLP-based process for knowledge discovery to detect information about pathologies, patients' phenotype, doctors' prescriptions and commonalities in electronic medical records, by extracting information from free narrative text written by clinicians during medical visits, resulting in the extraction of valuable information and enriching real world evidence data from a multidisciplinary setting. Methods: We collected clinical notes from the Allergy Department of Humanitas Research Hospital written in the last 3 years and used it to look for diseases that cluster together as comorbidities associated to the main pathology of our patients, and for the extent of prescription of systemic corticosteroids, thus evaluating the ability of NLP-based tools for knowledge discovery to extract structured information from free text. Results: We found that the 3 most frequent comorbidities to appear in our clusters were asthma, rhinitis, and urticaria, and that 991 (of 2057) patients suffered from at least one of these comorbidities. The clusters which co-occur particularly often are oral allergy syndrome and urticaria (131 patients), angioedema and urticaria (105 patients), rhinitis and asthma (227 patients). With regards to systemic corticosteroid prescription volume by our clinicians, we found it was lower when compared to the therapy the patients followed before coming to our attention, with the exception of two diseases: Chronic obstructive pulmonary disease and Angioedema. Conclusions: This analysis seems to be valid and is confirmed by the data from the literature. This means that NLP tools could have significant role in many other research fields of medicine, as it may help identify other important, and possibly previously neglected clusters of patients with comorbidities and commonalities. Another potential benefit of this approach lies in its potential ability to foster a multidisciplinary approach, using the same drugs to treat pathologies normally treated by physicians in different branches of medicine, thus saving resources and improving the pharmacological management of patients.

9.
Arch Med Sci ; 18(3): 587-595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35591841

RESUMO

Introduction: Identifying SARS-CoV-2 patients at higher risk of mortality is crucial in the management of a pandemic. Artificial intelligence techniques allow one to analyze large amounts of data to find hidden patterns. We aimed to develop and validate a mortality score at admission for COVID-19 based on high-level machine learning. Material and methods: We conducted a retrospective cohort study on hospitalized adult COVID-19 patients between March and December 2020. The primary outcome was in-hospital mortality. A machine learning approach based on vital parameters, laboratory values and demographic features was applied to develop different models. Then, a feature importance analysis was performed to reduce the number of variables included in the model, to develop a risk score with good overall performance, that was finally evaluated in terms of discrimination and calibration capabilities. All results underwent cross-validation. Results: 1,135 consecutive patients (median age 70 years, 64% male) were enrolled, 48 patients were excluded, and the cohort was randomly divided into training (760) and test (327) groups. During hospitalization, 251 (22%) patients died. After feature selection, the best performing classifier was random forest (AUC 0.88 ±0.03). Based on the relative importance of each variable, a pragmatic score was developed, showing good performances (AUC 0.85 ±0.025), and three levels were defined that correlated well with in-hospital mortality. Conclusions: Machine learning techniques were applied in order to develop an accurate in-hospital mortality risk score for COVID-19 based on ten variables. The application of the proposed score has utility in clinical settings to guide the management and prognostication of COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA