Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 12(4): 2115-2122, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35425237

RESUMO

A morphological study of the micro-scale defects induced by growing a carbon-infiltrated carbon nanotube (CICNT) forest on concave substrates was conducted. Two CICNT heights (roughly 60 µm and 400 µm) and 4 curvatures (1-4 mm ID) were studied in order to test the geometric limitations. Defects were categorized and quantified by scanning electron microscopy (SEM) of the tops and cross-sections. These deformities were categorized as increased roughness on the top surface, a corrugated (also called wavy or rippled) forest, a curved forest, an inside crevice where the forest separates, and increased forest density on the top surface. Roughness increased nearly 3-fold with the taller forest heights no matter the substrate curvature. Due to the geometric limitations of CICNT height and substrate curvature, all other microscale defects were significantly more present on samples with a small radius of curvature and a tall CICNT forest (p < 0.05). These buckling and warping types of defects were attributed to the increase in circumferential compression as the forest grows as well as the van der Waals interactions between the nanotubes. Because the fabrication process for CICNT involves growing a CNT forest and then infiltrating it with pyrolytic carbon, this work may be applicable to other CNT forests on concave substrates within these forest heights and substrate curvatures.

2.
J Orthop Res ; 40(8): 1953-1960, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34727381

RESUMO

Periprosthetic joint infection (PJI) is a devastating complication of orthopedic implant surgeries, such as total knee and hip arthroplasties. Treatment requires additional surgeries because antibiotics have limited efficacy due to biofilm formation and resistant bacterial strains such as methicillin-resistant Staphylococcus aureus (MRSA). A non-pharmaceutical approach is needed, and examples of this are found in nature; dragonfly and cicada wings are antibacterial because of their nanopillar surface structure rather than their chemistry. Carbon-infiltrated carbon nanotube (CICNT) surfaces exhibit a similar nanopillar structure, and have been shown to facilitate osseointegration, and it is postulated that they might provide a structurally-derived resistance to bacterial proliferation and biofilm formation. The objective of this study was to test the biofilm resistance of CICNT coatings. Two types of CICNT were produced: a vertically aligned CNT forest on a silicon substrate using a layer of iron as the catalyst (CICNT-Si) and a random-oriented CNT forest on stainless steel (SS) substrate using the substrate as the catalyst (CICNT-SS). These were tested against SS and carbon controls. After 48 h in an MRSA biofilm reactor, samples demonstrated that both types of CICNT coatings significantly (p < 0.0001) reduced MRSA biofilm formation by 60%-80%. Morphologically, biofilm presence on both types of CICNT was also significantly reduced. Clinical Significance: Results suggest that a CICNT surface modification could be suitable and advantageous for medical devices susceptible to MRSA cell attachment and biofilm proliferation, particularly orthopedic implants.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanotubos de Carbono , Odonatos , Animais , Antibacterianos/uso terapêutico , Biofilmes , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA