Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 285(2): 1272-82, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19889624

RESUMO

For 10 years, research has focused on signaling pathways controlling translation to explain neuronal death in Alzheimer Disease (AD). Previous studies demonstrated in different cellular and animal models and AD patients that translation is down-regulated by the activation of double-stranded RNA-dependent protein kinase (PKR). Among downstream factors of PKR, the Fas-associated protein with a death domain (FADD) and subsequent activated caspase-8 are responsible for PKR-induced apoptosis in recombinant virus-infected cells. However, no studies have reported the role of PKR in death receptor signaling in AD. The aim of this project is to determine physical and functional interactions of PKR with FADD in amyloid-beta peptide (Abeta) neurotoxicity and in APP(SL)PS1 KI transgenic mice. In SH-SY5Y cells, results showed that Abeta42 induced a large increase in phosphorylated PKR and FADD levels and a physical interaction between PKR and FADD in the nucleus, also observed in the cortex of APP(SL)PS1 KI mice. However, PKR gene silencing or treatment with a specific PKR inhibitor significantly prevented the increase in pT(451)-PKR and pS(194)-FADD levels in SH-SY5Y nuclei and completely inhibited activities of caspase-3 and -8. The contribution of PKR in neurodegeneration through the death receptor signaling pathway may support the development of therapeutics targeting PKR to limit neuronal death in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Córtex Cerebral/metabolismo , Inibidores Enzimáticos/farmacologia , Proteína de Domínio de Morte Associada a Fas/genética , Camundongos , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Transdução de Sinais/genética , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética
2.
BMC Neurosci ; 11: 105, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20738842

RESUMO

BACKGROUND: EphrinA5 is one of the best-studied members of the Eph-ephrin family of guidance molecules, known to be involved in brain developmental processes. Using in situ hybridization, ephrinA5 mRNA expression has been detected in the retinotectal, the thalamocortical, and the olfactory systems; however, no study focused on the distribution of the protein. Considering that this membrane-anchored molecule may act far from the neuron soma expressing the transcript, it is of a crucial interest to localize ephrinA5 protein to better understand its function. RESULTS: Using immunohistochemistry, we found that ephrinA5 protein is highly expressed in the developing mouse brain from E12.5 to E16.5. The olfactory bulb, the cortex, the striatum, the thalamus, and the colliculi showed high intensity of labelling, suggesting its implication in topographic mapping of olfactory, retinocollicular, thalamocortical, corticothalamic and mesostriatal systems. In the olfactory nerve, we found an early ephrinA5 protein expression at E12.5 suggesting its implication in the guidance of primary olfactory neurons into the olfactory bulb. In the thalamus, we detected a dynamic graduated protein expression, suggesting its role in the corticothalamic patterning, whereas ephrinA5 protein expression in the target region of mesencephalic dopaminergic neurones indicated its involvement in the mesostriatal topographic mapping. Following E16.5, the signal faded gradually and was barely detectable at P0, suggesting a main role for ephrinA5 in primary molecular events in topographic map formation. CONCLUSION: Our work shows that ephrinA5 protein is expressed in restrictive regions of the developing mouse brain. This expression pattern points out the potential sites of action of this molecule in the olfactory, retinotectal, thalamocortical, corticothalamic and mesostriatal systems, during development. This study is essential to better understand the role of ephrinA5 during developmental topographic mapping of connections and to further characterise the mechanisms involved in pathway restoration following cell transplantation in the damaged brain.


Assuntos
Química Encefálica/fisiologia , Encéfalo/crescimento & desenvolvimento , Efrina-A5/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos , Encéfalo/embriologia , Genótipo , Imuno-Histoquímica , Camundongos , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Nervo Olfatório/crescimento & desenvolvimento , Nervo Olfatório/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Olfato , Transcrição Gênica
3.
J Cell Mol Med ; 13(8A): 1476-88, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19602051

RESUMO

Amyloid beta-peptide (Abeta) deposits and neurofibrillary tangles are key hallmarks in Alzheimer's disease (AD). Abeta stimulates many signal transducers involved in the neuronal death. However, many mechanisms remain to be elucidated because no definitive therapy of AD exists. Some studies have focused on the control of translation which involves eIF2 and eIF4E, main eukaryotic factors of initiation. The availability of these factors depends on the activation of the double-stranded RNA-dependent protein kinase (PKR) and the mammalian target of rapamycin (mTOR), respectively. mTOR positively regulates the translation while PKR results in a protein synthesis shutdown. Many studies demonstrated that the PKR signalling pathway is up-regulated in cellular and animal models of AD and in the brain of AD patients. Interestingly, our results showed that phosphorylated PKR and eIF2alpha levels were significantly increased in lymphocytes of AD patients. These modifications were significantly correlated with cognitive and memory test scores performed in AD patients. On the contrary, the mTOR signalling pathway is down-regulated in cellular and animal models of AD. Recently, we showed that p53, regulated protein in development and DNA damage response 1 and tuberous sclerosis complex 2 could represent molecular links between PKR and mTOR signalling pathways. PKR could be an early biomarker of the neuronal death and a critical target for a therapeutic programme in AD.


Assuntos
Doença de Alzheimer/enzimologia , eIF-2 Quinase/metabolismo , Doença de Alzheimer/diagnóstico , Animais , Biomarcadores/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR
4.
Neurobiol Dis ; 36(1): 151-61, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19631745

RESUMO

The control of translation is disturbed in Alzheimer's disease (AD). This study analysed the crosslink between the up regulation of double-stranded RNA-dependent-protein kinase (PKR) and the down regulation of mammalian target of rapamycin (mTOR) signalling pathways via p53, the protein Regulated in the Development and DNA damage response 1 (Redd1) and the tuberous sclerosis complex (TSC2) factors in two beta-amyloid peptide (Abeta) neurotoxicity models. In SH-SY5Y cells, Abeta42 induced an increase of P(T451)-PKR and of the ratio p66/(p66+p53) in nuclei and a physical interaction between these proteins. Redd1 gene levels increased and P(T1462)-TSC2 decreased. These disturbances were earlier in rat primary neurons with nuclear co-localization of Redd1 and PKR. The PKR gene silencing in SH-SY5Y cells prevented these alterations. p53, Redd1 and TSC2 could represent the molecular links between PKR and mTOR in Abeta neurotoxicity. PKR could be a critical target in a therapeutic program of AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo , eIF-2 Quinase/metabolismo , Análise de Variância , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Imunoprecipitação/métodos , Neuroblastoma/patologia , Neurônios/citologia , Fosforilação/efeitos dos fármacos , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição , Transfecção/métodos , Proteína 2 do Complexo Esclerose Tuberosa , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , eIF-2 Quinase/genética
5.
J Alzheimers Dis ; 21(4): 1217-31, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21504114

RESUMO

Alzheimer's disease (AD), a neurodegenerative disorder, is the most common form of dementia in the elderly individuals. Among the pathogenic mechanisms in AD, chronic systemic inflammation is described and characterized by massive production of proinflammatory cytokines by peripheral blood mononuclear cells (PBMCs), which may contribute to an altered immune response and exacerbation of neurodegeneration. Studies have also reported increased double-stranded RNA-dependent protein kinase (PKR) activation in the PBMCs of patients with AD. Interestingly, PKR could be involved in NF-κB activation, leading to production of a wide range of cytokines. We proposed to decrease proinflammatory cytokines production and release by treating the PBMCs in 25 patients with AD with a specific inhibitor of PKR. Our results showed that PKR inhibition greatly decreased tumor necrosis factor , interleukin (IL)-1α, IL-1ß, and IL-6 production and release but did not affect the chemokine RANTES. Moreover, inhibition of the proinflammatory factors was correlated with prevention of caspase-3 activation. These results indicated that specific inhibition of PKR at the peripheral level might decrease the inflammatory response in AD.


Assuntos
Doença de Alzheimer/metabolismo , Citocinas/antagonistas & inibidores , Leucócitos Mononucleares/enzimologia , Inibidores de Proteínas Quinases/farmacologia , eIF-2 Quinase/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Caspase 3/metabolismo , Inibidores de Caspase , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Células Cultivadas , Quimiocina CCL5/biossíntese , Quimiocina CCL5/metabolismo , Citocinas/biossíntese , Citocinas/metabolismo , Feminino , Humanos , Inflamação/enzimologia , Inflamação/patologia , Inflamação/prevenção & controle , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , NF-kappa B/antagonistas & inibidores , NF-kappa B/fisiologia , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA