Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 40(11): 2806-2819, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28810288

RESUMO

The transition from active growth to dormancy is critical for the survival of perennial plants. We identified a DEMETER-like (CsDML) cDNA from a winter-enriched cDNA subtractive library in chestnut (Castanea sativa Mill.), an economically and ecologically important species. Next, we characterized this DNA demethylase and its putative ortholog in the more experimentally tractable hybrid poplar (Populus tremula × alba), under the signals that trigger bud dormancy in trees. We performed phylogenetic and protein sequence analysis, gene expression profiling, and 5-methyl-cytosine methylation immunodetection studies to evaluate the role of CsDML and its homolog in poplar, PtaDML6. Transgenic hybrid poplars overexpressing CsDML were produced and analysed. Short days and cold temperatures induced CsDML and PtaDML6. Overexpression of CsDML accelerated short-day-induced bud formation, specifically from Stages 1 to 0. Buds acquired a red-brown coloration earlier than wild-type plants, alongside with the up-regulation of flavonoid biosynthesis enzymes and accumulation of flavonoids in the shoot apical meristem and bud scales. Our data show that the CsDML gene induces bud formation needed for the survival of the apical meristem under the harsh conditions of winter.


Assuntos
Meristema/enzimologia , Meristema/crescimento & desenvolvimento , Oxirredutases O-Desmetilantes/metabolismo , Proteínas de Plantas/metabolismo , Populus/enzimologia , Populus/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Domínio Catalítico , Temperatura Baixa , DNA Glicosilases/química , DNA Glicosilases/metabolismo , Metilação de DNA/genética , Flavonoides/metabolismo , Fluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hippocastanaceae/enzimologia , Hippocastanaceae/genética , Hippocastanaceae/crescimento & desenvolvimento , Meristema/genética , Fotoperíodo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Populus/genética , Estações do Ano
2.
New Phytol ; 194(1): 83-90, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22229950

RESUMO

• Sylleptic branching in trees may increase significantly branch number, leaf area and the general growth of the tree, particularly in its early years. Although this is a very important trait, so far little is known about the genes that control this process. • This article characterizes the Castanea sativa RAV1 gene, homologous to Arabidopsis TEM genes, by analyzing its circadian behavior and examining its winter expression in chestnut stems and buds. Transgenic hybrid poplars over-expressing CsRAV1 or showing RNA interference down-regulated PtaRAV1 and PtaRAV2 expression were produced and analyzed. • Over-expression of the CsRAV1 gene induces the early formation of sylleptic branches in hybrid poplar plantlets during the same growing season in which the lateral buds form. Only minor growth differences and no changes in wood anatomy are produced. • The possibility of generating trees with a greater biomass by manipulating the CsRAV1 gene makes CsRAV1 transgenic plants promising candidates for bioenergy production.


Assuntos
Genes de Plantas/genética , Hippocastanaceae/genética , Hibridização Genética , Morfogênese/genética , Populus/crescimento & desenvolvimento , Populus/genética , Sequência de Aminoácidos , Arabidopsis/genética , Ritmo Circadiano/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Caules de Planta/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Madeira/anatomia & histologia , Madeira/crescimento & desenvolvimento
3.
Front Plant Sci ; 9: 1030, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057588

RESUMO

Woody perennials adapt their genetic traits to local climate conditions. Day length plays an essential role in the seasonal growth of poplar trees. When photoperiod falls below a given critical day length, poplars undergo growth cessation and bud set. A leaf-localized mechanism of photoperiod measurement triggers the transcriptional modulation of a long distance signaling molecule, FLOWERING LOCUS T (FT). This molecule targets meristem function giving rise to these seasonal responses. Studies over the past decade have identified conserved orthologous genes involved in photoperiodic flowering in Arabidopsis that regulate poplar vegetative growth. However, phenological and molecular examination of key photoperiod signaling molecules reveals functional differences between these two plant model systems suggesting alternative components and/or regulatory mechanisms operating during poplar vegetative growth. Here, we review current knowledge and provide new data regarding the molecular components of the photoperiod measuring mechanism that regulates annual growth in poplar focusing on main achievements and new perspectives.

4.
Plant Methods ; 13: 50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638438

RESUMO

BACKGROUND: Precise control of gene expression is essential to synchronize plant development with the environment. In perennial plants, transcriptional regulation remains poorly understood, mainly due to the long time required to perform functional studies. Transcriptional reporters based on luciferase have been useful to study circadian and diurnal regulation of gene expression, both by transcription factors and chromatin remodelers. The high mobility group proteins are considered transcriptional chaperones that also modify the chromatin architecture. They have been found in several species, presenting in some cases a circadian expression of their mRNA or protein. RESULTS: Transactivation experiments have been shown as a powerful and fast method to obtain information about the potential role of transcription factors upon a certain reporter. We designed and validated a luciferase transcriptional reporter using the 5' sequence upstream ATG of Populus tremula × alba LHY2 gene. We showed the robustness of this reporter line under long day and continuous light conditions. Moreover, we confirmed that pPtaLHY2::LUC activity reproduces the accumulation of PtaLHY2 mRNA. We performed transactivation studies by transient expression, using the reporter line as a genetic background, unraveling a new function of a high mobility group protein in poplar, which can activate the PtaLHY2 promoter in a gate-dependent manner. We also showed PtaHMGB2/3 needs darkness to produce that activation and exhibits an active degradation after dawn, mediated by the 26S proteasome. CONCLUSIONS: We generated a stable luciferase reporter poplar line based on the circadian clock gene PtaLHY2, which can be used to investigate transcriptional regulation and signal transduction pathway. Using this reporter line as a genetic background, we established a methodology to rapidly assess potential regulators of diurnal and circadian rhythms. This tool allowed us to demonstrate that PtaHMGB2/3 promotes the transcriptional activation of our reporter in a gate-dependent manner. Moreover, we added new information about the PtaHMGB2/3 protein regulation along the day. This methodology can be easily adapted to other transcription factors and reporters.

5.
Biotechnol Biofuels ; 10: 110, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469706

RESUMO

BACKGROUND: Early branching or syllepsis has been positively correlated with high biomass yields in short-rotation coppice (SRC) poplar plantations, which could represent an important lignocellulosic feedstock for the production of second-generation bioenergy. In prior work, we generated hybrid poplars overexpressing the chestnut gene RELATED TO ABI3/VP1 1 (CsRAV1), which featured c. 80% more sylleptic branches than non-modified trees in growth chambers. Given the high plasticity of syllepsis, we established a field trial to monitor the performance of these trees under outdoor conditions and a SRC management. RESULTS: We examined two CsRAV1-overexpression poplar events for their ability to maintain syllepsis and their potential to enhance biomass production. Two poplar events with reduced expression of the CsRAV1 homologous poplar genes PtaRAV1 and PtaRAV2 were also included in the trial. Under our culture conditions, CsRAV1-overexpression poplars continued developing syllepsis over two cultivation cycles. Biomass production increased on completion of the first cycle for one of the overexpression events, showing unaltered structural, chemical, or combustion wood properties. On completion of the second cycle, aerial growth and biomass yields of both overexpression events were reduced as compared to the control. CONCLUSIONS: These findings support the potential application of CsRAV1-overexpression to increase syllepsis in commercial elite trees without changing their wood quality. However, the syllepsis triggered by the introduction of this genetic modification appeared not to be sufficient to sustain and enhance biomass production.

6.
PLoS One ; 8(2): e58105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469147

RESUMO

The Arabidopsis kinase OPEN STOMATA 1 (OST1) plays a key role in regulating drought stress signalling, particularly stomatal closure. We have identified and investigated the functions of the OST1 ortholog in Z. mays (ZmOST1). Ectopic expression of ZmOST1 in the Arabidopsis ost1 mutant restores the stomatal closure phenotype in response to drought. Furthermore, we have identified the transcription factor, ZmSNAC1, which is directly phosphorylated by ZmOST1 with implications on its localization and protein stability. Interestingly, ZmSNAC1 binds to the ABA-box of ZmOST1, which is conserved in SnRK2s activated by ABA and is part of the contact site for the negative-regulating clade A PP2C phosphatases. Taken together, our results indicate that ZmSNAC1 is a substrate of ZmOST1 and delineate a novel osmotic stress transcriptional pathway in maize.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Zea mays/enzimologia , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Secas , Dados de Sequência Molecular , Oryza/metabolismo , Fosforilação/efeitos dos fármacos , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Estresse Fisiológico/genética , Zea mays/anatomia & histologia , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA