Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436559

RESUMO

A wide range of approaches can be used to detect micro RNA (miRNA)-target gene pairs (mTPs) from expression data, differing in the ways the gene and miRNA expression profiles are calculated, combined and correlated. However, there is no clear consensus on which is the best approach across all datasets. Here, we have implemented multiple strategies and applied them to three distinct rare disease datasets that comprise smallRNA-Seq and RNA-Seq data obtained from the same samples, obtaining mTPs related to the disease pathology. All datasets were preprocessed using a standardized, freely available computational workflow, DEG_workflow. This workflow includes coRmiT, a method to compare multiple strategies for mTP detection. We used it to investigate the overlap of the detected mTPs with predicted and validated mTPs from 11 different databases. Results show that there is no clear best strategy for mTP detection applicable to all situations. We therefore propose the integration of the results of the different strategies by selecting the one with the highest odds ratio for each miRNA, as the optimal way to integrate the results. We applied this selection-integration method to the datasets and showed it to be robust to changes in the predicted and validated mTP databases. Our findings have important implications for miRNA analysis. coRmiT is implemented as part of the ExpHunterSuite Bioconductor package available from https://bioconductor.org/packages/ExpHunterSuite.


Assuntos
MicroRNAs , Consenso , Bases de Dados Factuais , MicroRNAs/genética , Razão de Chances , RNA-Seq
2.
Neurobiol Dis ; 176: 105964, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526090

RESUMO

Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy (prevalence <1:1,000,000) characterized by the accumulation of insoluble deposits of aberrant glycogen (polyglucosans), named Lafora bodies, in the brain but also in peripheral tissues. LD is the most severe form of the group of progressive myoclonus epilepsies, since patients present a rapid deterioration and dementia with amplification of seizures, leading to death after a decade from the onset of the first symptoms. We have recently described that reactive glia-derived neuroinflammation should be considered a novel hallmark of LD since we observed a florid upregulation of differentially expressed genes in both LD mouse lines, which were mainly related to mediators of inflammatory response. In this work, we define an upregulation of the expression of mediators of the TNF and IL6/JAK2 signaling pathways in LD. In addition, we describe the activation of the non-canonical form of the inflammasome. Furthermore, we describe the infiltration of peripheral immune cells in the brain parenchyma, which could aggravate glia-derived neuroinflammation. Finally, we describe CXCL10 and S100b as blood biomarkers of the disease, which will allow the study of the progression of the disease using serum blood samples. We consider that the identification of these initial inflammatory changes in LD will be very important to implement possible anti-inflammatory therapeutic strategies to prevent the development of the disease.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Animais , Camundongos , Interleucina-6 , Doença de Lafora/genética , Neuroglia/metabolismo , Doenças Neuroinflamatórias , Proteínas Tirosina Fosfatases não Receptoras/genética , Transdução de Sinais , Fatores de Necrose Tumoral/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046993

RESUMO

Lafora disease (LD) is a neurological disorder characterized by progressive myoclonus epilepsy. The hallmark of the disease is the presence of insoluble forms of glycogen (polyglucosan bodies, or PGBs) in the brain. The accumulation of PGBs is causative of the pathophysiological features of LD. However, despite the efforts made by different groups, the question of why PGBs accumulate in the brain is still unanswered. We have recently demonstrated that, in vivo, astrocytes accumulate most of the PGBs present in the brain, and this could lead to astrocyte dysfunction. To develop a deeper understanding of the defects present in LD astrocytes that lead to LD pathophysiology, we obtained pure primary cultures of astrocytes from LD mice from the postnatal stage under conditions that accumulate PGBs, the hallmark of LD. These cells serve as novel in vitro models for studying PGBs accumulation and related LD dysfunctions. In this sense, the metabolomics of LD astrocytes indicate that they accumulate metabolic intermediates of the upper part of the glycolytic pathway, probably as a consequence of enhanced glucose uptake. In addition, we also demonstrate the feasibility of using the model in the identification of different compounds that may reduce the accumulation of polyglucosan inclusions.


Assuntos
Doença de Lafora , Camundongos , Animais , Doença de Lafora/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Glucanos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
4.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674605

RESUMO

Lafora disease is a rare, fatal form of progressive myoclonus epilepsy characterized by continuous neurodegeneration with epileptic seizures, characterized by the intracellular accumulation of aberrant polyglucosan granules called Lafora bodies. Several works have provided numerous evidence of molecular and cellular alterations in neural tissue from experimental mouse models deficient in either laforin or malin, two proteins related to the disease. Oxidative stress, alterations in proteostasis, and deregulation of inflammatory signals are some of the molecular alterations underlying this condition in both KO animal models. Lafora bodies appear early in the animal's life, but many of the aforementioned molecular aberrant processes and the consequent neurological symptoms ensue only as animals age. Here, using small RNA-seq and quantitative PCR on brain extracts from laforin and malin KO male mice of different ages, we show that two different microRNA species, miR-155 and miR-146a, are overexpressed in an age-dependent manner. We also observed altered expression of putative target genes for each of the microRNAs studied in brain extracts. These results open the path for a detailed dissection of the molecular consequences of laforin and malin deficiency in brain tissue, as well as the potential role of miR-155 and miR-146a as specific biomarkers of disease progression in LD.


Assuntos
Doença de Lafora , MicroRNAs , Camundongos , Masculino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Lafora/genética , Doença de Lafora/metabolismo , Doenças Neuroinflamatórias , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Estresse Oxidativo/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Stem Cells ; 39(9): 1253-1269, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33963799

RESUMO

Although previous studies suggest that neural stem cells (NSCs) exist in the adult olfactory bulb (OB), their location, identity, and capacity to generate mature neurons in vivo has been little explored. Here, we injected enhanced green fluorescent protein (EGFP)-expressing retroviral particles into the OB core of adult mice to label dividing cells and to track the differentiation/maturation of any neurons they might generate. EGFP-labeled cells initially expressed adult NSC markers on days 1 to 3 postinjection (dpi), including Nestin, GLAST, Sox2, Prominin-1, and GFAP. EGFP+ -doublecortin (DCX) cells with a migratory morphology were also detected and their abundance increased over a 7-day period. Furthermore, EGFP-labeled cells progressively became NeuN+ neurons, they acquired neuronal morphologies, and they became immunoreactive for OB neuron subtype markers, the most abundant representing calretinin expressing interneurons. OB-NSCs also generated glial cells, suggesting they could be multipotent in vivo. Significantly, the newly generated neurons established and received synaptic contacts, and they expressed presynaptic proteins and the transcription factor pCREB. By contrast, when the retroviral particles were injected into the subventricular zone (SVZ), nearly all (98%) EGFP+ -cells were postmitotic when they reached the OB core, implying that the vast majority of proliferating cells present in the OB are not derived from the SVZ. Furthermore, we detected slowly dividing label-retaining cells in this region that could correspond to the population of resident NSCs. This is the first time NSCs located in the adult OB core have been shown to generate neurons that incorporate into OB circuits in vivo.


Assuntos
Células-Tronco Neurais , Bulbo Olfatório , Animais , Diferenciação Celular/fisiologia , Interneurônios/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/metabolismo
6.
Stem Cells ; 30(12): 2796-809, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22987443

RESUMO

Adult neural stem cells (NSCs) located in the subventricular zone (SVZ) persistently produce new neurons destined to the olfactory bulb (OB). Recent research suggests that the OB is also a source of NSCs that remains largely unexplored. Using single/dual-labeling procedures, we address the existence of NSCs in the innermost layers of the OB. In vivo, these cells are more quiescent that their SVZ counterparts, but after in vitro expansion, they behave similarly. Self-renewal and proliferation assays in co-culture with niche astrocytes indicate that OB-glia restricts NSC activity whereas SVZ-glia has the opposite effect. Gene expression profiling identifies WNT7A as a key SVZ-glial factor lacking in OB-glia that enhances self-renewal, thereby improving the propagation of OB-NSC cultures. These data demonstrate that region-specific glial factors account for in vivo differences in NSC activity and point to WNT7A as a tool that may be instrumental for the NSC expansion phase that precedes grafting.


Assuntos
Astrócitos/citologia , Células-Tronco Neurais/citologia , Bulbo Olfatório/citologia , Proteínas Wnt/metabolismo , Animais , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Humanos , Camundongos , Proteínas Wnt/genética
7.
Front Neurosci ; 16: 903881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35801179

RESUMO

Neuronal programming by forced expression of transcription factors (TFs) holds promise for clinical applications of regenerative medicine. However, the mechanisms by which TFs coordinate their activities on the genome and control distinct neuronal fates remain obscure. Using direct neuronal programming of embryonic stem cells, we dissected the contribution of a series of TFs to specific neuronal regulatory programs. We deconstructed the Ascl1-Lmx1b-Foxa2-Pet1 TF combination that has been shown to generate serotonergic neurons and found that stepwise addition of TFs to Ascl1 canalizes the neuronal fate into a diffuse monoaminergic fate. The addition of pioneer factor Foxa2 represses Phox2b to induce serotonergic fate, similar to in vivo regulatory networks. Foxa2 and Pet1 appear to act synergistically to upregulate serotonergic fate. Foxa2 and Pet1 co-bind to a small fraction of genomic regions but mostly bind to different regulatory sites. In contrast to the combinatorial binding activities of other programming TFs, Pet1 does not strictly follow the Foxa2 pioneer. These findings highlight the challenges in formulating generalizable rules for describing the behavior of TF combinations that program distinct neuronal subtypes.

8.
Mol Neurobiol ; 57(3): 1607-1621, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31808062

RESUMO

Lafora disease (LD) is a rare, fatal form of progressive myoclonus epilepsy. The molecular basis of this devastating disease is still poorly understood, and no treatment is available yet, which leads to the death of the patients around 10 years from the onset of the first symptoms. The hallmark of LD is the accumulation of insoluble glycogen-like inclusions in the brain and peripheral tissues, as a consequence of altered glycogen homeostasis. In addition, other determinants in the pathophysiology of LD have been suggested, such as proteostasis impairment, with reduction in autophagy, and oxidative stress, among others. In order to gain a general view of the genes involved in the pathophysiology of LD, in this work, we have performed RNA-Seq transcriptome analyses of whole-brain tissue from two independent mouse models of the disease, namely Epm2a-/- and Epm2b-/- mice, at different times of age. Our results provide strong evidence for three major facts: first, in both models of LD, we found a common set of upregulated genes, most of them encoding mediators of inflammatory response; second, there was a progression with the age in the appearance of these inflammatory markers, starting at 3 months of age; and third, reactive glia was responsible for the expression of these inflammatory genes. These results clearly indicate that neuroinflammation is one of the most important traits to be considered in order to fully understand the pathophysiology of LD, and define reactive glia as novel therapeutic targets in the disease.


Assuntos
Fatores Etários , Doença de Lafora/metabolismo , Epilepsias Mioclônicas Progressivas/metabolismo , Neuroglia/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Glicogênio/metabolismo , Corpos de Inclusão/metabolismo , Doença de Lafora/genética , Camundongos Knockout , Epilepsias Mioclônicas Progressivas/genética , Estresse Oxidativo/fisiologia
9.
Nat Neurosci ; 22(6): 897-908, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086315

RESUMO

Developmental programs that generate the astonishing neuronal diversity of the nervous system are not completely understood and thus present a major challenge for clinical applications of guided cell differentiation strategies. Using direct neuronal programming of embryonic stem cells, we found that two main vertebrate proneural factors, Ascl1 and neurogenin 2 (Neurog2), induce different neuronal fates by binding to largely different sets of genomic sites. Their divergent binding patterns are not determined by the previous chromatin state, but are distinguished by enrichment of specific E-box sequences that reflect the binding preferences of the DNA-binding domains. The divergent Ascl1 and Neurog2 binding patterns result in distinct chromatin accessibility and enhancer activity profiles that differentially shape the binding of downstream transcription factors during neuronal differentiation. This study provides a mechanistic understanding of how transcription factors constrain terminal cell fates, and it delineates the importance of choosing the right proneural factor in neuronal reprogramming strategies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromatina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias , Humanos , Neurônios/metabolismo
10.
Nat Commun ; 8(1): 583, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928394

RESUMO

Protein subcellular localization is fundamental to the establishment of the body axis, cell migration, synaptic plasticity, and a vast range of other biological processes. Protein localization occurs through three mechanisms: protein transport, mRNA localization, and local translation. However, the relative contribution of each process to neuronal polarity remains unknown. Using neurons differentiated from mouse embryonic stem cells, we analyze protein and RNA expression and translation rates in isolated cell bodies and neurites genome-wide. We quantify 7323 proteins and the entire transcriptome, and identify hundreds of neurite-localized proteins and locally translated mRNAs. Our results demonstrate that mRNA localization is the primary mechanism for protein localization in neurites that may account for half of the neurite-localized proteome. Moreover, we identify multiple neurite-targeted non-coding RNAs and RNA-binding proteins with potential regulatory roles. These results provide further insight into the mechanisms underlying the establishment of neuronal polarity.Subcellular localization of RNAs and proteins is important for polarized cells such as neurons. Here the authors differentiate mouse embryonic stem cells into neurons, and analyze the local transcriptome, proteome, and translated transcriptome in their cell bodies and neurites, providing a unique resource for future studies on neuronal polarity.


Assuntos
Neuritos/metabolismo , Proteínas/metabolismo , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Neurônios/metabolismo , Biossíntese de Proteínas , Transporte Proteico , Proteínas/genética , Proteoma/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma
11.
Neurobiol Aging ; 34(11): 2623-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23796660

RESUMO

Neurogenesis persists in the adult brain as a form of plasticity due to the existence of neural stem cells (NSCs). Alterations in neurogenesis have been found in transgenic Alzheimer's disease (AD) mouse models, but NSC activity and neurogenesis in sporadic AD models remains to be examined. We herein describe a remarkable increase in NSC proliferation in the forebrain of SAMP8, a non-transgenic mouse strain that recapitulates the transition from healthy aging to AD. The increase in proliferation is transient, precedes AD-like symptoms such as amyloid beta 1-42 [Aß(1-42)] increase or gliosis, and is followed by a steep decline at later stages. Interestingly, in vitro studies indicate that secreted Aß(1-42) and PI3K signaling may account for the early boost in NSC proliferation. Our results highlight the role of soluble Aß(1-42) peptide and PI3K in the autocrine regulation of NSCs, and further suggest that over-proliferation of NSCs before the appearance of AD pathology may underlie neurogenic failure during the age-related progression of the disease. These findings have implications for therapeutic approaches based on neurogenesis in AD.


Assuntos
Células-Tronco Adultas/fisiologia , Envelhecimento/genética , Envelhecimento/patologia , Peptídeos beta-Amiloides/farmacologia , Proliferação de Células/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Células-Tronco Adultas/classificação , Células-Tronco Adultas/efeitos dos fármacos , Fatores Etários , Peptídeos beta-Amiloides/metabolismo , Animais , Antígenos CD1/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Bromodesoxiuridina , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Ventrículos Laterais/citologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Mutantes , Fragmentos de Peptídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
12.
Curr Protoc Stem Cell Biol ; Chapter 2: Unit 2D.10, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22605645

RESUMO

The factors that regulate the switch from adult neural stem cell (aNSC) quiescence to active proliferation are poorly understood. Here we describe a method to study the in vivo effect of a soluble factor on cell cycle entry and proliferation of aNSCs located in the brain neurogenic niches. First, we provide information for implanting osmotic minipumps that will deliver the compound of interest directly into the mouse brain. When combined with the administration of the thymidine analog bromodeoxyuridine (BrdU), this technique is the most basic procedure to study the effects of a soluble factor on aNSC proliferation. We also describe a dual replication labeling protocol using two different halogenated thymidine analogs, chloro- and iododeoxyuridine (CldU and IdU), that allows tracking of proliferating cells and assessing cell cycle re-entry of aNSCs at different time points.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Halogenação/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Timidina/análogos & derivados , Timidina/farmacologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Infusões Intraventriculares , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Solubilidade/efeitos dos fármacos , Coloração e Rotulagem , Timidina/administração & dosagem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA