Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2813: 245-280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38888783

RESUMO

Identifying antigens within a pathogen is a critical task to develop effective vaccines and diagnostic methods, as well as understanding the evolution and adaptation to host immune responses. Historically, antigenicity was studied with experiments that evaluate the immune response against selected fragments of pathogens. Using this approach, the scientific community has gathered abundant information regarding which pathogenic fragments are immunogenic. The systematic collection of this data has enabled unraveling many of the fundamental rules underlying the properties defining epitopes and immunogenicity, and has resulted in the creation of a large panel of immunologically relevant predictive (in silico) tools. The development and application of such tools have proven to accelerate the identification of novel epitopes within biomedical applications reducing experimental costs. This chapter introduces some basic concepts about MHC presentation, T cell and B cell epitopes, the experimental efforts to determine those, and focuses on state-of-the-art methods for epitope prediction, highlighting their strengths and limitations, and catering instructions for their rational use.


Assuntos
Biologia Computacional , Simulação por Computador , Epitopos de Linfócito B , Epitopos de Linfócito T , Humanos , Epitopos de Linfócito T/imunologia , Biologia Computacional/métodos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos/imunologia , Software , Animais , Mapeamento de Epitopos/métodos , Apresentação de Antígeno/imunologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-34661202

RESUMO

Optimal superposition of protein structures or other biological molecules is crucial for understanding their structure, function, dynamics and evolution. Here, we investigate the use of probabilistic programming to superimpose protein structures guided by a Bayesian model. Our model THESEUS-PP is based on the THESEUS model, a probabilistic model of protein superposition based on rotation, translation and perturbation of an underlying, latent mean structure. The model was implemented in the probabilistic programming language Pyro. Unlike conventional methods that minimize the sum of the squared distances, THESEUS takes into account correlated atom positions and heteroscedasticity (ie. atom positions can feature different variances). THESEUS performs maximum likelihood estimation using iterative expectation-maximization. In contrast, THESEUS-PP allows automated maximum a-posteriori (MAP) estimation using suitable priors over rotation, translation, variances and latent mean structure. The results indicate that probabilistic programming is a powerful new paradigm for the formulation of Bayesian probabilistic models concerning biomolecular structure. Specifically, we envision the use of the THESEUS-PP model as a suitable error model or likelihood in Bayesian protein structure prediction using deep probabilistic programming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA