Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 61(3): 452-463, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36537103

RESUMO

OBJECTIVES: Conventionally, reference intervals are established by direct methods, which require a well-characterized, obviously healthy study population. This elaborate approach is time consuming, costly and has rarely been applied to steroid hormones measured by mass spectrometry. In this feasibility study, we investigate whether indirect methods based on routine laboratory results can be used to verify reference intervals from external sources. METHODS: A total of 11,259 serum samples were used to quantify 13 steroid hormones by mass spectrometry. For indirect estimation of reference intervals, we applied a "modified Hoffmann approach", and verified the results with a more sophisticated statistical method (refineR). We compared our results with those of four recent studies using direct approaches. RESULTS: We evaluated a total of 81 sex- and age-specific reference intervals, for which at least 120 measurements were available. The overall agreement between indirectly and directly determined reference intervals was surprisingly good as nearly every fourth reference limit could be confirmed by narrow tolerance limits. Furthermore, lower reference limits could be provided for some low concentrated hormones by the indirect method. In cases of substantial deviations, our results matched the underlying data better than reference intervals from external studies. CONCLUSIONS: Our study shows for the first time that indirect methods are a valuable tool to verify existing reference intervals for steroid hormones. A simple "modified Hoffmann approach" based on the general assumption of a normal or lognormal distribution model is sufficient for screening purposes, while the refineR algorithm may be used for a more detailed analysis.


Assuntos
Esteroides , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Valores de Referência , Hormônios , Fatores Etários
2.
Diabetologia ; 64(12): 2843-2855, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480211

RESUMO

AIMS/HYPOTHESIS: The individual risk of progression of diabetic peripheral neuropathy is difficult to predict for each individual. Mutations in proteins that are responsible for the process of myelination are known to cause neurodegeneration and display alteration in experimental models of diabetic neuropathy. In a prospective observational human pilot study, we investigated myelin-specific circulating mRNA targets, which have been identified in vitro, for their capacity in the diagnosis and prediction of diabetic neuropathy. The most promising candidate was tested against the recently established biomarker of neural damage, neurofilament light chain protein. METHODS: Schwann cells were cultured under high-glucose conditions and mRNAs of various myelin-specific genes were screened intra- and extracellularly. Ninety-two participants with type 2 diabetes and 30 control participants were enrolled and evaluated for peripheral neuropathy using neuropathy deficit scores, neuropathy symptom scores and nerve conduction studies as well as quantitative sensory testing at baseline and after 12/24 months of a follow-up period. Magnetic resonance neurography of the sciatic nerve was performed in 37 individuals. Neurofilament light chain protein and four myelin-specific mRNA transcripts derived from in vitro screenings were measured in the serum of all participants. The results were tested for associations with specific neuropathic deficits, fractional anisotropy and the progression of neuropathic deficits at baseline and after 12 and 24 months. RESULTS: In neuronal Schwann cells and human nerve sections, myelin protein zero was identified as the strongest candidate for a biomarker study. Circulating mRNA of myelin protein zero was decreased significantly in participants with diabetic neuropathy (p < 0.001), whereas neurofilament light chain protein showed increased levels in participants with diabetic neuropathy (p < 0.05). Both variables were linked to altered electrophysiology, fractional anisotropy and quantitative sensory testing. In a receiver-operating characteristic curve analysis myelin protein zero improved the diagnostic performance significantly in combination with a standard model (diabetes duration, age, BMI, HbA1c) from an AUC of 0.681 to 0.836 for the detection of diabetic peripheral neuropathy. A follow-up study revealed that increased neurofilament light chain was associated with the development of a hyperalgesic phenotype (p < 0.05), whereas decreased myelin protein zero predicted hypoalgesia (p < 0.001) and progressive loss of nerve function 24 months in advance (HR of 6.519). CONCLUSIONS/INTERPRETATION: This study introduces a dynamic and non-invasive assessment strategy for the underlying pathogenesis of diabetic peripheral neuropathy. The diagnosis of axonal degeneration, associated with hyperalgesia, and demyelination, linked to hypoalgesia, could benefit from the usage of neurofilament light chain protein and circulating mRNA of myelin protein zero as potential biomarkers.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Biomarcadores , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/patologia , Seguimentos , Humanos , Hiperalgesia/complicações , Neurônios/metabolismo , Projetos Piloto
3.
Circ Res ; 125(3): 282-294, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31213138

RESUMO

RATIONALE: Fluid shear stress (FSS) maintains NOS-3 (endothelial NO synthase) expression. Homozygosity for the C variant of the T-786C single-nucleotide polymorphism of the NOS3 gene, which solely exists in humans, renders the gene less sensitive to FSS, resulting in a reduced endothelial cell (EC) capacity to generate NO. Decreased bioavailability of NO in the arterial vessel wall facilitates atherosclerosis. Consequently, individuals homozygous for the C variant have an increased risk for coronary heart disease (CHD). OBJECTIVE: At least 2 compensatory mechanisms seem to minimize the deleterious effects of this single-nucleotide polymorphism in affected individuals, one of which is characterized herein. METHODS AND RESULTS: Human genotyped umbilical vein ECs and THP-1 monocytes were used to investigate the role of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in vitro. Its concentration in plasma samples from genotyped patients with CHD and age-matched CHD-free controls was determined using quantitative ultraperformance LC-MS/MS. Exposure of human ECs to FSS effectively reduced monocyte transmigration particularly through monolayers of CC-genotype ECs. Primarily in CC-genotype ECs, FSS elicited a marked rise in COX (cyclooxygenase)-2 and L-PGDS (lipocalin-type prostaglandin D synthase) expression, which appeared to be NO sensitive, and provoked a significant release of 15d-PGJ2 over baseline. Exogenous 15d-PGJ2 significantly reduced monocyte transmigration and exerted a pronounced anti-inflammatory effect on the transmigrated monocytes by downregulating, for example, transcription of the IL (interleukin)-1ß gene (IL1B). Reporter gene analyses verified that this effect is due to binding of Nrf2 (nuclear factor [erythroid-derived 2]-like 2) to 2 AREs (antioxidant response elements) in the proximal IL1B promoter. In patients with CHD, 15d-PGJ2 plasma levels were significantly upregulated compared with age-matched CHD-free controls, suggesting that this powerful anti-inflammatory prostanoid is part of an endogenous defence mechanism to counteract CHD. CONCLUSIONS: Despite a reduced capacity to form NO, CC-genotype ECs maintain a robust anti-inflammatory phenotype through an enhanced FSS-dependent release of 15d-PGJ2.


Assuntos
Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico/sangue , Polimorfismo de Nucleotídeo Único , Prostaglandina D2/análogos & derivados , Adaptação Fisiológica , Idoso , Idoso de 80 Anos ou mais , Doença das Coronárias/sangue , Doença das Coronárias/genética , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Indução Enzimática , Feminino , Genes Reporter , Predisposição Genética para Doença , Hemorreologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Oxirredutases Intramoleculares/biossíntese , Oxirredutases Intramoleculares/genética , Lipocalinas/biossíntese , Lipocalinas/genética , Masculino , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/fisiologia , Óxido Nítrico Sintase Tipo III/genética , Prostaglandina D2/biossíntese , Prostaglandina D2/sangue , Prostaglandina D2/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Células THP-1
4.
J Enzyme Inhib Med Chem ; 36(1): 2010-2015, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34517737

RESUMO

Tumours reprogram their metabolism to acquire an evolutionary advantage over normal cells. However, not all such metabolic pathways support energy production. An example of these metabolic pathways is the Methylglyoxal (MG) one. This pathway helps maintain the redox state, and it might act as a phosphate sensor that monitors the intracellular phosphate levels. In this work, we discuss the biochemical step of the MG pathway and interrelate it with cancer.


Assuntos
Glioxal/metabolismo , Neoplasias/metabolismo , Glioxal/química , Humanos , Estrutura Molecular
5.
Cell Mol Life Sci ; 76(22): 4551-4568, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31073745

RESUMO

The gene CNDP1 was associated with the development of diabetic nephropathy. Its enzyme carnosinase 1 (CN1) primarily hydrolyzes the histidine-containing dipeptide carnosine but other organ and metabolic functions are mainly unknown. In our study we generated CNDP1 knockout zebrafish, which showed strongly decreased CN1 activity and increased intracellular carnosine levels. Vasculature and kidneys of CNDP1-/- zebrafish were not affected, except for a transient glomerular alteration. Amino acid profiling showed a decrease of certain amino acids in CNDP1-/- zebrafish, suggesting a specific function for CN1 in the amino acid metabolisms. Indeed, we identified a CN1 activity for Ala-His and Ser-His. Under diabetic conditions increased carnosine levels in CNDP1-/- embryos could not protect from respective organ alterations. Although, weight gain through overfeeding was restrained by CNDP1 loss. Together, zebrafish exhibits CN1 functions, while CNDP1 knockout alters the amino acid metabolism, attenuates weight gain but cannot protect organs from diabetic complications.


Assuntos
Aminoácidos/metabolismo , Complicações do Diabetes/metabolismo , Dipeptidases/metabolismo , Aumento de Peso/fisiologia , Animais , Carnosina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Técnicas de Inativação de Genes/métodos , Rim/metabolismo , Peixe-Zebra
6.
J Biol Chem ; 292(8): 3224-3238, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-27956549

RESUMO

The glyoxalase system is a highly specific enzyme system existing in all mammalian cells that is responsible for the detoxification of dicarbonyl species, primarily methylglyoxal (MG). It has been implicated to play an essential role in preventing the increased formation of advanced glycation end products under certain pathological conditions. We have established the first glyoxalase 1 knock-out model (GLO1-/-) in mammalian Schwann cells using the CRISPR/Cas9 technique to investigate compensatory mechanisms. Neither elevated concentrations of MG nor associated protein modifications were observed in GLO1-/- cells. Alternative detoxification of MG in GLO1-/- is achieved by increased catalytic efficiency of aldose reductase toward hemithioacetal (product of glutathione and MG), which is most likely caused by S-nitrosylation of aldose reductase. The hemithioacetal is mainly converted into lactaldehyde, which is paralleled by a loss of reduced glutathione. Inhibition of aldose reductase in GLO1-/- cells is associated with an increased sensitivity against MG, elevated intracellular MG levels, associated modifications, as well as increased oxidative stress. Our data suggest that aldose reductase can compensate for the loss of GLO1. This might be of clinical importance within the context of neuronal diseases caused by an impaired glyoxalase system and elevated levels of dicarbonyl species, such as MG.


Assuntos
Aldeído Redutase/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Lactoilglutationa Liase/metabolismo , Aldeído Pirúvico/metabolismo , Células de Schwann/metabolismo , Animais , Células Cultivadas , Deleção de Genes , Técnicas de Inativação de Genes , Lactoilglutationa Liase/genética , Camundongos , Estresse Oxidativo , Células de Schwann/citologia
7.
Anal Bioanal Chem ; 410(2): 521-528, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143878

RESUMO

The determination of individual prostaglandins (PG) in humans is mainly performed in urine samples. The quantification of PGs in human plasma could improve the understanding of particular PG species under various physiological and pathological conditions. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a dehydrated downstream product of PGD2 and is of high interest due to its recently discovered anti-inflammatory effects. Increasing availability of highly sensitive mass spectrometry allows the quantification of low abundant biomarkers like 15d-PGJ2 in human plasma samples. Herein, a sensitive LC-MS/MS method for the determination of 15d-PGJ2 was established. The method was validated according to the guidance of the American Food and Drug Administration and tested in plasma samples from patients with poorly controlled diabetes, considered to be a pro-inflammatory condition. Extraction of 15d-PGJ2 was achieved with an easy-to-use liquid-liquid extraction by ethyl acetate following a methanol precipitation. The lower limit of quantification was 2.5 pg mL-1 and linearity (R 2 = 0.998) was guaranteed between 2.5 and 500 pg mL-1 for 15d-PGJ2. Selectivity was assured by the use of two individual mass transitions (qualifier and quantifier). Precision and accuracy were validated in an inter- and intraday assay with a coefficient of variation below 11.8% (intraday) and 14.7% (interday). In diabetic patients with an HbA1C > 9%, increased plasma concentrations of 15d-PGJ2 compared to control plasma were measured. 15d-PGJ2 correlated negatively with the inflammation marker C-reactive protein. The developed LC-MS/MS method represents a new possibility to quantify 15d-PGJ2 with high specificity in human plasma samples. This may contribute to a better understanding of the potential anti-inflammatory effects of 15d-PGJ2 in severe long-term pro-inflammatory disorders like diabetes, cancer, or cardiovascular disease.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Prostaglandina D2/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Adulto , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Inflamação/sangue , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Prostaglandina D2/sangue
9.
Int J Mol Sci ; 18(3)2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28304355

RESUMO

Sepsis remains one of the leading causes of death in intensive care units. Although sepsis is caused by a viral, fungal or bacterial infection, it is the dysregulated generalized host response that ultimately leads to severe dysfunction of multiple organs and death. The concomitant profound metabolic changes are characterized by hyperglycemia, insulin resistance, and profound transformations of the intracellular energy supply in both peripheral and immune cells. A further hallmark of the early phases of sepsis is a massive formation of reactive oxygen (ROS; e.g., superoxide) as well as nitrogen (RNS; e.g., nitric oxide) species. Reactive carbonyl species (RCS) form a third crucial group of highly reactive metabolites, which until today have been not the focus of interest in sepsis. However, we previously showed in a prospective observational clinical trial that patients suffering from septic shock are characterized by significant methylglyoxal (MG)-derived carbonyl stress, with the glyoxalase system being downregulated in peripheral blood mononuclear cells. In this review, we give a detailed insight into the current state of research regarding the metabolic changes that entail an increased MG-production in septicemia. Thus, we point out the special role of the glyoxalase system in the context of sepsis.


Assuntos
Lactoilglutationa Liase/metabolismo , Aldeído Pirúvico/metabolismo , Sepse/metabolismo , Estresse Fisiológico , Animais , Humanos , Carbonilação Proteica , Aldeído Pirúvico/toxicidade , Sepse/etiologia
10.
Adv Sci (Weinh) ; 11(4): e2302325, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059818

RESUMO

Omega-6 fatty acids are the primary polyunsaturated fatty acids in most Western diets, while their role in diabetes remains controversial. Exposure of omega-6 fatty acids to an oxidative environment results in the generation of a highly reactive carbonyl species known as trans, trans-2,4-decadienal (tt-DDE). The timely and efficient detoxification of this metabolite, which has actions comparable to other reactive carbonyl species, such as 4-hydroxynonenal, acrolein, acetaldehyde, and methylglyoxal, is essential for disease prevention. However, the detoxification mechanism for tt-DDE remains elusive. In this study, the enzyme Aldh9a1b is identified as having a key role in the detoxification of tt-DDE. Loss of Aldh9a1b increased tt-DDE levels and resulted in an abnormal retinal vasculature and glucose intolerance in aldh9a1b-/- zebrafish. Transcriptomic and metabolomic analyses revealed that tt-DDE and aldh9a1b deficiency in larval and adult zebrafish induced insulin resistance and impaired glucose homeostasis. Moreover, alterations in hyaloid vasculature is induced by aldh9a1b knockout or by tt-DDE treatment can be rescued by the insulin receptor sensitizers metformin and rosiglitazone. Collectively, these results demonstrated that tt-DDE is the substrate of Aldh9a1b which causes microvascular damage and impaired glucose metabolism through insulin resistance.


Assuntos
Aldeídos , Resistência à Insulina , Insulina , Animais , Peixe-Zebra , Gluconeogênese , Ácidos Graxos Ômega-6
11.
Redox Biol ; 59: 102576, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535130

RESUMO

Glyoxalase 2 is the second enzyme of the glyoxalase system, catalyzing the detoxification of methylglyoxal to d-lactate via SD-Lactoylglutathione. Recent in vitro studies have suggested Glo2 as a regulator of glycolysis, but if Glo2 regulates glucose homeostasis and related organ specific functions in vivo has not yet been evaluated. Therefore, a CRISPR-Cas9 knockout of glo2 in zebrafish was created and analyzed. Consistent with its function in methylglyoxal detoxification, SD-Lactoylglutathione, but not methylglyoxal accumulated in glo2-/- larvae, without altering the glutathione metabolism or affecting longevity. Adult glo2-/- livers displayed a reduced hexose concentration and a reduced postprandial P70-S6 kinase activation, but upstream postprandial AKT phosphorylation remained unchanged. In contrast, glo2-/- skeletal muscle remained metabolically intact, possibly compensating for the dysfunctional liver through increased glucose uptake and glycolytic activity. glo2-/- zebrafish maintained euglycemia and showed no damage of the retinal vasculature, kidney, liver and skeletal muscle. In conclusion, the data identified Glo2 as a regulator of cellular energy metabolism in liver and skeletal muscle, but the redox state and reactive metabolite accumulation were not affected by the loss of Glo2.


Assuntos
Lactoilglutationa Liase , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Aldeído Pirúvico/metabolismo , Ácido Láctico , Glucose , Tioléster Hidrolases/metabolismo
12.
Nat Cancer ; 4(11): 1544-1560, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749321

RESUMO

Cachexia is a major cause of morbidity and mortality in individuals with cancer and is characterized by weight loss due to adipose and muscle tissue wasting. Hallmarks of white adipose tissue (WAT) remodeling, which often precedes weight loss, are impaired lipid storage, inflammation and eventually fibrosis. Tissue wasting occurs in response to tumor-secreted factors. Considering that the continuous endothelium in WAT is the first line of contact with circulating factors, we postulated whether the endothelium itself may orchestrate tissue remodeling. Here, we show using human and mouse cancer models that during precachexia, tumors overactivate Notch1 signaling in distant WAT endothelium. Sustained endothelial Notch1 signaling induces a WAT wasting phenotype in male mice through excessive retinoic acid production. Pharmacological blockade of retinoic acid signaling was sufficient to inhibit WAT wasting in a mouse cancer cachexia model. This demonstrates that cancer manipulates the endothelium at distant sites to mediate WAT wasting by altering angiocrine signals.


Assuntos
Tecido Adiposo Branco , Caquexia , Neoplasias , Receptor Notch1 , Animais , Humanos , Masculino , Camundongos , Tecido Adiposo Branco/patologia , Caquexia/patologia , Neoplasias/complicações , Transdução de Sinais , Tretinoína , Receptor Notch1/metabolismo
13.
Redox Biol ; 50: 102249, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35114580

RESUMO

Reactive carbonyl species (RCS) are spontaneously formed in the metabolism and modify and impair the function of DNA, proteins and lipids leading to several organ complications. In zebrafish, knockout of the RCS detoxifying enzymes glyoxalase 1 (Glo 1), aldehyde dehydrogenase 3a1 (Aldh3a1) and aldo-ketoreductase 1a1a (Akr1a1a) showed a signature of elevated RCS which specifically regulated glucose metabolism, hyperglycemia and diabetic organ damage. aldh2.1 was compensatory upregulated in glo1-/- animals and therefore this study aimed to investigate the detoxification ability for RCS by Aldh2.1 in zebrafish independent of ethanol exposure. aldh2.1 knockout zebrafish were generated using CRISPR/Cas9 and subsequently analyzed on a histological, metabolomic and transcriptomic level. aldh2.1-/- zebrafish displayed increased endogenous acetaldehyde (AA) inducing an increased angiogenesis in retinal vasculature. Expression and pharmacological interventional studies identified an imbalance of c-Jun N-terminal kinase (JNK) and p38 MAPK induced by AA, which mediate an activation of angiogenesis. Moreover, increased AA in aldh2.1-/- zebrafish did not induce hyperglycemia, instead AA inhibited the expression of glucokinase (gck) and glucose-6-phosphatase (g6pc), which led to an impaired glucose metabolism. In conclusion, the data have identified AA as the preferred substrate for Aldh2.1's detoxification ability, which subsequently causes microvascular organ damage and impaired glucose metabolism.


Assuntos
Acetaldeído , Neovascularização Retiniana , Peixe-Zebra , Acetaldeído/metabolismo , Aldeído Desidrogenase/genética , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Glucose/metabolismo , Vasos Retinianos , Peixe-Zebra/metabolismo
14.
Mol Metab ; 55: 101406, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838714

RESUMO

OBJECTIVE: Methylglyoxal (MG) is a highly reactive α-oxoaldehyde that glycates proteins. MG has been linked to the development of diabetic complications: MG is the major precursor of advanced glycation end products (AGEs), a risk marker for diabetic complications in humans. Furthermore, flies and fish with elevated MG develop insulin resistance, obesity, and hyperglycemia. MG is detoxified in large part through the glyoxalase system, whose rate-limiting enzyme is glyoxalase I (Glo1). Hence, we aimed to study how Glo1 activity is regulated. METHODS: We studied the regulation and effect of post-translational modifications of Glo1 in tissue culture and in mouse models of diabetes. RESULTS: We show that Glo1 activity is promoted by phosphorylation on Tyrosine 136 via multiple kinases. We find that Glo1 Y136 phosphorylation responds in a bimodal fashion to glucose levels, increasing in cell culture from 0 mM to 5 mM (physiological) glucose, and then decreasing at higher glucose concentrations, both in cell culture and in mouse models of hyperglycemia. CONCLUSIONS: These data, together with published findings that elevated MG leads to hyperglycemia, suggest the existence of a deleterious positive feedback loop whereby hyperglycemia leads to reduced Glo1 activity, contributing to elevated MG levels, which in turn promote hyperglycemia. Hence, perturbations elevating either glucose or MG have the potential to start an auto-amplifying feedback loop contributing to diabetic complications.


Assuntos
Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Animais , Complicações do Diabetes , Diabetes Mellitus , Glucose , Produtos Finais de Glicação Avançada/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Hiperglicemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Fosforilação , Aldeído Pirúvico/metabolismo
15.
J Clin Endocrinol Metab ; 107(8): 2167-2181, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35661214

RESUMO

CONTEXT: Novel fasting interventions have gained scientific and public attention. Periodic fasting has emerged as a dietary modification promoting beneficial effects on metabolic syndrome. OBJECTIVE: Assess whether periodic fasting reduces albuminuria and activates nephropathy-driven pathways. DESIGN/PARTICIPANTS: Proof-of-concept study where individuals with type 2 diabetes (n = 40) and increased albumin-to-creatinine ratio (ACR) were randomly assigned to receive a monthly fasting-mimicking diet (FMD) or a Mediterranean diet for 6 months with 3-month follow-up. MAIN OUTCOMES MEASURES: Change in ACR was assessed by analysis of covariance adjusted for age, sex, weight loss, and baseline value. Prespecified subgroup analysis for patients with micro- vs macroalbuminuria at baseline was performed. Change in homeostatic model assessment for insulin resistance (HOMA-IR), circulating markers of dicarbonyl detoxification (methylglyoxal-derived hydroimidazolone 1, glyoxalase-1, and hydroxyacetone), DNA-damage/repair (phosphorylated histone H2AX), lipid oxidation (acylcarnitines), and senescence (soluble urokinase plasminogen activator receptor) were assessed as exploratory endpoints. RESULTS: FMD was well tolerated with 71% to 95% of the participants reporting no adverse effects. After 6 months, change in ACR was comparable between study groups [110.3 (99.2, 121.5) mg/g; P = 0.45]. FMD led to a reduction of ACR in patients with microalbuminuria levels at baseline [-30.3 (-35.7, -24.9) mg/g; P ≤ 0.05] but not in those with macroalbuminuria [434.0 (404.7, 463.4) mg/g; P = 0.23]. FMD reduced HOMA-IR [-3.8 (-5.6, -2.0); P ≤ 0.05] and soluble urokinase plasminogen activator receptor [-156.6 (-172.9, -140.4) pg/mL; P ≤ 0.05], while no change was observed in markers of dicarbonyl detoxification or DNA-damage/repair. Change in acylcarnitines was related to patient responsiveness to ACR improvement. At follow-up only HOMA-IR reduction [-1.9 (-3.7, -0.1), P ≤ 0.05]) was sustained. CONCLUSIONS: Improvement of microalbuminuria and of markers of insulin resistance, lipid oxidation, and senescence suggest the potential beneficial effects of periodic fasting in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Resistência à Insulina , Albuminúria/etiologia , Biomarcadores , Creatinina , DNA/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Jejum , Humanos , Lipídeos , Receptores de Ativador de Plasminogênio Tipo Uroquinase
16.
Mol Metab ; 60: 101487, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35378329

RESUMO

OBJECTIVE: Fibrotic organ responses have recently been identified as long-term complications in diabetes. Indeed, insulin resistance and aberrant hepatic lipid accumulation represent driving features of progressive non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis and non-alcoholic steatohepatitis (NASH) to fibrosis. Effective pharmacological regimens to stop progressive liver disease are still lacking to-date. METHODS: Based on our previous discovery of transforming growth factor beta-like stimulated clone (TSC)22D4 as a key driver of insulin resistance and glucose intolerance in obesity and type 2 diabetes, we generated a TSC22D4-hepatocyte specific knockout line (TSC22D4-HepaKO) and exposed mice to control or NASH diet models. Mechanistic insights were generated by metabolic phenotyping and single-nuclei RNA sequencing. RESULTS: Hepatic TSC22D4 expression was significantly correlated with markers of liver disease progression and fibrosis in both murine and human livers. Indeed, hepatic TSC22D4 levels were elevated in human NASH patients as well as in several murine NASH models. Specific genetic deletion of TSC22D4 in hepatocytes led to reduced liver lipid accumulation, improvements in steatosis and inflammation scores and decreased apoptosis in mice fed a lipogenic MCD diet. Single-nuclei RNA sequencing revealed a distinct TSC22D4-dependent gene signature identifying an upregulation of mitochondrial-related processes in hepatocytes upon loss of TSC22D4. An enrichment of genes involved in the TCA cycle, mitochondrial organization, and triglyceride metabolism underscored the hepatocyte-protective phenotype and overall decreased liver damage as seen in mouse models of hepatocyte-selective TSC22D4 loss-of-function. CONCLUSIONS: Together, our data uncover a new connection between targeted depletion of TSC22D4 and intrinsic metabolic processes in progressive liver disease. Hepatocyte-specific reduction of TSC22D4 improves hepatic steatosis and promotes hepatocyte survival via mitochondrial-related mechanisms thus paving the way for targeted therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Diabetes Mellitus Tipo 2/metabolismo , Fibrose , Hepatócitos/metabolismo , Humanos , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição/metabolismo
17.
Metabolites ; 11(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478094

RESUMO

Retinoic acids are vitamin A metabolites that have numerous essential functions in humans, and are also used as drugs to treat acne and acute promyelocytic leukemia. All-trans retinoic acid (atRA) is the major occurring metabolite of retinoic acid in humans. This study provides a sensitive and specific liquid chromatography-tandem mass spectrometry approach in order to quantify atRA in human plasma samples. The isolation of atRA by hyperacidified liquid-liquid extraction using hexane and ethyl acetate resulted in a recovery of 89.7 ± 9.2%. The lower limit of detection was 20 pg·mL-1, and 7 point calibration displayed good linearity (R2 = 0.994) in the range of 50-3200 pg mL-1. Selectivity was guaranteed by the use of two individual mass transitions (qualifier and quantifier), and precision and accuracy were determined intraday and interday with a coefficient variation of 9.3% (intraday) and 14.0% (interday). Moreover, the method could be used to isolate atRA from hyperlipidemic samples. Applying this method to plasma samples from patients with poorly controlled Type 2 diabetes significantly decreased atRA plasma levels as compared to those of the healthy controls. In addition, atRA concentrations were highly associated with increased low-density lipoprotein (LDL) and decreased high-density lipoprotein (HDL) cholesterol levels.

18.
Adv Sci (Weinh) ; 8(18): e2101281, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278746

RESUMO

Increased acrolein (ACR), a toxic metabolite derived from energy consumption, is associated with diabetes and its complications. However, the molecular mechanisms are mostly unknown, and a suitable animal model with internal increased ACR does not exist for in vivo studying so far. Several enzyme systems are responsible for acrolein detoxification, such as Aldehyde Dehydrogenase (ALDH), Aldo-Keto Reductase (AKR), and Glutathione S-Transferase (GST). To evaluate the function of ACR in glucose homeostasis and diabetes, akr1a1a-/- zebrafish mutants are generated using CRISPR/Cas9 technology. Accumulated endogenous acrolein is confirmed in akr1a1a-/- larvae and livers of adults. Moreover, a series of experiments are performed regarding organic alterations, the glucose homeostasis, transcriptome, and metabolomics in Tg(fli1:EGFP) zebrafish. Akr1a1a-/- larvae display impaired glucose homeostasis and angiogenic retina hyaloid vasculature, which are caused by reduced acrolein detoxification ability and increased internal ACR concentration. The effects of acrolein on hyaloid vasculature can be reversed by acrolein-scavenger l-carnosine treatment. In adult akr1a1a-/- mutants, impaired glucose tolerance accompanied by angiogenic retina vessels and glomerular basement membrane thickening, consistent with an early pathological appearance in diabetic retinopathy and nephropathy, are observed. Thus, the data strongly suggest impaired ACR detoxification and elevated ACR concentration as biomarkers and inducers for diabetes and diabetic complications.


Assuntos
Acroleína/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Receptor de Insulina/metabolismo , Animais , Modelos Animais de Doenças , Homeostase , Larva/metabolismo , Metabolômica/métodos , Transdução de Sinais , Transcriptoma , Peixe-Zebra/metabolismo
19.
Front Neurosci ; 15: 741494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140582

RESUMO

BACKGROUND: Recent studies have found that troponin T parallels the structural and functional decay of peripheral nerves at the level of the lower limbs in patients with type 2 diabetes (T2D). The aim of this study was to determine whether this finding can also be reproduced at the level of the upper limbs. METHODS: Ten patients with fasting glucose levels >100 mg/dl (five with prediabetes and five with T2D) underwent magnetic resonance neurography of the right upper arm comprising T2-weighted and diffusion weighted sequences. The fractional anisotropy (FA), an indicator for the structural integrity of peripheral nerves, was calculated in an automated approach for the median, ulnar, and radial nerve. All participants underwent additional clinical, serological, and electrophysiological assessments. RESULTS: High sensitivity Troponin T (hsTNT) and HbA1c were negatively correlated with the average FA of the median, ulnar and radial nerve (r = -0.84; p = 0.002 and r = -0.68; p = 0.032). Both FA and hsTNT further showed correlations with items of the Michigan Hand Outcome Questionnaire (r = -0.76; p = 0.010 and r = 0.87; p = 0.001, respectively). A negative correlation was found for hsTNT and HbA1c with the total Purdue Pegboard Test Score (r = -0.87; p = 0.001 and r = -0.68; p = 0.031). CONCLUSION: This study is the first to find that hsTNT and HbA1c are associated with functional and structural parameters of the nerves at the level of the upper limbs in patients with impaired glucose tolerance and T2D. Our results support the hypothesis that hyperglycemia-related microangiopathy, represented by elevated hsTNT levels, is a contributor to nerve damage in diabetic polyneuropathy.

20.
Diabetes ; 70(2): 616-626, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33239449

RESUMO

Type 2 diabetes has become a pandemic and leads to late diabetic complications of organs, including kidney and eye. Lowering hyperglycemia is the typical therapeutic goal in clinical medicine. However, hyperglycemia may only be a symptom of diabetes but not the sole cause of late diabetic complications; instead, other diabetes-related alterations could be causative. Here, we studied the role of CaM kinase II-δ (CaMKIIδ), which is known to be activated through diabetic metabolism. CaMKIIδ is expressed ubiquitously and might therefore affect several different organ systems. We crossed diabetic leptin receptor-mutant mice to mice lacking CaMKIIδ globally. Remarkably, CaMKIIδ-deficient diabetic mice did not develop hyperglycemia. As potential underlying mechanisms, we provide evidence for improved insulin sensing with increased glucose transport into skeletal muscle and also reduced hepatic glucose production. Despite normoglycemia, CaMKIIδ-deficient diabetic mice developed the full picture of diabetic nephropathy, but diabetic retinopathy was prevented. We also unmasked a retina-specific gene expression signature that might contribute to CaMKII-dependent retinal diabetic complications. These data challenge the clinical concept of normalizing hyperglycemia in diabetes as a causative treatment strategy for late diabetic complications and call for a more detailed analysis of intracellular metabolic signals in different diabetic organs.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Retinopatia Diabética/metabolismo , Hiperglicemia/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/genética , Retinopatia Diabética/genética , Expressão Gênica , Hiperglicemia/genética , Camundongos , Camundongos Knockout , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA