Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(7): e23609, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593345

RESUMO

PTPRD, a well-established tumor suppressor gene, encodes the protein tyrosine phosphatase-type D. This protein consists of three immunoglobulin-like (Ig) domains, four to eight fibronectin type 3 (FN) domains, a single transmembrane segment, and two cytoplasmic tandem tyrosine phosphatase domains. PTPRD is known to harbor various cancer-associated point mutations. While it is assumed that PTPRD regulates cellular functions as a tumor suppressor through the tyrosine phosphatase activity in the intracellular region, the function of its extracellular domain (ECD) in cancer is not well understood. In this study, we systematically examined the impact of 92 cancer-associated point mutations within the ECD. We found that 69.6% (64 out of 92) of these mutations suppressed total protein expression and/or plasma membrane localization. Notably, almost all mutations (20 out of 21) within the region between the last FN domain and transmembrane segment affected protein expression and/or localization, highlighting the importance of this region for protein stability. We further found that some mutations within the Ig domains adjacent to the glycosaminoglycan-binding pocket enhanced PTPRD's binding ability to heparan sulfate proteoglycans (HSPGs). This interaction is proposed to suppress phosphatase activity. Our findings therefore suggest that HSPG-mediated attenuation of phosphatase activity may be involved in tumorigenic processes through PTPRD dysregulation.


Assuntos
Proteoglicanas de Heparan Sulfato , Neoplasias , Humanos , Proteoglicanas de Heparan Sulfato/metabolismo , Mutação Puntual , Proteínas da Matriz Extracelular/genética , Imunoglobulinas , Estabilidade Proteica , Tirosina/genética , Monoéster Fosfórico Hidrolases/genética , Heparitina Sulfato , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
2.
Biochem Biophys Res Commun ; 658: 27-35, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37018886

RESUMO

The beiging of white adipose tissue (WAT) is expected to improve systemic metabolic conditions; however, the regulation and developmental origin of this process remain insufficiently understood. In the present study, the implication of platelet-derived growth factor receptor alpha (PDGFRα) was examined in the beiging of inguinal WAT (ingWAT) of neonatal mice. Using in vivo Nestin expressing cell (Nestin+) lineage tracing and deletion mouse models, we found that, in the mice with Pdgfra gene inactivation in Nestin+ lineage (N-PRα-KO mice), the growth of inguinal WAT (ingWAT) was suppressed during neonatal periods as compared with control wild-type mice. In the ingWAT of N-PRα-KO mice, the beige adipocytes appeared earlier that were accompanied by the increased expressions of both adipogenic and beiging markers compared to control wild-type mice. In the perivascular adipocyte progenitor cell (APC) niche of ingWAT, many PDGFRα+ cells of Nestin+ lineage were recruited in Pdgfra-preserving control mice, but were largely decreased in N-PRα-KO mice. This PDGFRα+ cell depletion was replenished by PDGFRα+ cells of non-Nestin+ lineage, unexpectedly resulting in an increase of total PDGFRα+ cell number in APC niche of N-PRα-KO mice over that of control mice. These represented a potent homeostatic control of PDGFRα+ cells between Nestin+ and non-Nestin+ lineages that was accompanied by the active adipogenesis and beiging as well as small WAT depot. This highly plastic nature of PDGFRα+ cells in APC niche may contribute to the WAT remodeling for the therapeutic purpose against metabolic diseases.


Assuntos
Adipócitos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Camundongos , Animais , Linhagem da Célula , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Adipogenia/genética , Gordura Subcutânea/metabolismo
3.
Bioorg Med Chem Lett ; 87: 129266, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011768

RESUMO

Glutaminase converts glutamine into glutamic acid and has two isoforms: glutaminase 1 (GLS1) and glutaminase 2 (GLS2). GLS1 is overexpressed in several tumors, and research to develop glutaminase inhibitors as antitumor drugs is currently underway. The present study examined candidate GLS1 inhibitors using in silico screening and attempted to synthesize novel GLS1 inhibitors and assess their GLS1 inhibitory activities in a mouse kidney extract and against recombinant mouse and human GLS1. Novel compounds were synthesized using compound C as the lead compound, and their GLS1 inhibitory activities were evaluated using the mouse kidney extract. Among the derivatives tested, the trans-4-hydroxycyclohexylamide derivative 2j exhibited the strongest inhibitory activity. We also assessed the GLS1 inhibitory activities of the derivatives 2j, 5i, and 8a against recombinant mouse and human GLS1. The derivatives 5i and 8a significantly decreased the production of glutamic acid at 10 mM. In conclusion, we herein identified two compounds that exhibited GLS1 inhibitory activities with equal potencies as known GLS1 inhibitors. These results will contribute to the development of effective novel GLS1 inhibitors with more potent inhibitory activity.


Assuntos
Ácido Glutâmico , Glutaminase , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Glutamina , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 93: 129438, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549852

RESUMO

GLS1 is an attractive target not only as anticancer agents but also as candidates for various potential pharmaceutical applications such as anti-aging and anti-obesity treatments. We performed docking simulations based on the complex crystal structure of GLS1 and its inhibitor CB-839 and found that compound A bearing a thiadiazole skeleton exhibits GLS1 inhibition. Furthermore, we synthesized 27 thiadiazole derivatives in an effort to obtain a more potent GLS1 inhibitor. Among the synthesized derivatives, 4d showed more potent GLS1 inhibitory activity (IC50 of 46.7 µM) than known GLS1 inhibitor DON and A. Therefore, 4d is a very promising novel GLS1 inhibitor.


Assuntos
Antineoplásicos , Tiadiazóis , Antineoplásicos/farmacologia , Glutaminase/antagonistas & inibidores , Tiadiazóis/farmacologia , Tiadiazóis/química
5.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955470

RESUMO

This study demonstrates that the luciferin of the firefly squid Watasenia scintillans, which generally reacts with Watasenia luciferase, reacted with human albumin to emit light in proportion to the albumin concentration. The luminescence showed a peak wavelength at 540 nm and was eliminated by heat or protease treatment. We used urine samples collected from patients with diabetes to quantify urinary albumin concentration, which is essential for the early diagnosis of diabetic nephropathy. Consequently, we were able to measure urinary albumin concentrations by precipitating urinary proteins with acetone before the reaction with luciferin. A correlation was found with the result of the immunoturbidimetric method; however, the Watasenia luciferin method tended to produce lower albumin concentrations. This may be because the Watasenia luciferin reacts with only intact albumin. Therefore, the quantification method using Watasenia luciferin is a new principle of urinary albumin measurement that differs from already established methods such as immunoturbidimetry and high-performance liquid chromatography.


Assuntos
Decapodiformes , Vaga-Lumes , Albuminas/metabolismo , Albuminúria/diagnóstico , Animais , Decapodiformes/química , Vaga-Lumes/metabolismo , Luciferina de Vaga-Lumes/metabolismo , Humanos , Luciferinas
6.
Angiogenesis ; 24(1): 35-46, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32918673

RESUMO

Blood-brain barrier (BBB) dysfunction underlies the pathogenesis of many neurological diseases. Platelet-derived growth factor receptor-alpha (PDGFRα) induces hemorrhagic transformation (HT) downstream of tissue plasminogen activator in thrombolytic therapy of acute stroke. Thus, PDGFs are attractive therapeutic targets for BBB dysfunction. In the present study, we examined the role of PDGF signaling in the process of tissue remodeling after middle cerebral arterial occlusion (MCAO) in mice. Firstly, we found that imatinib increased lesion size after permanent MCAO in wild-type mice. Moreover, imatinib-induced HT only when administrated in the subacute phase of MCAO, but not in the acute phase. Secondly, we generated genetically mutated mice (C-KO mice) that showed decreased expression of perivascular PDGFRα. Additionally, transient MCAO experiments were performed in these mice. We found that the ischemic lesion size was not affected; however, the recruitment of PDGFRα/type I collagen-expressing perivascular cells was significantly downregulated, and HT and IgG leakage was augmented only in the subacute phase of stroke in C-KO mice. In both experiments, we found that the expression of tight junction proteins and PDGFRß-expressing pericyte coverage was not significantly affected in imatinib-treated mice and in C-KO mice. The specific implication of PDGFRα signaling was suggestive of protective effects against BBB dysfunction during the subacute phase of stroke. Vascular TGF-ß1 expression was downregulated in both imatinib-treated and C-KO mice, along with sustained levels of MMP9. Therefore, PDGFRα effects may be mediated by TGF-ß1 which exerts potent protective effects in the BBB.


Assuntos
Vasos Sanguíneos/metabolismo , Barreira Hematoencefálica/fisiopatologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Acidente Vascular Cerebral/complicações , Animais , Colágeno Tipo I/metabolismo , Hemorragia/patologia , Mesilato de Imatinib , Imunoglobulina G/metabolismo , Infarto da Artéria Cerebral Média/complicações , AVC Isquêmico/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Knockout , Fator de Crescimento Transformador beta1/metabolismo
7.
Eur J Appl Physiol ; 120(6): 1331-1340, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32303828

RESUMO

Hepcidin is a novel factor for iron deficiency in athletes, which is suggested to be regulated by interleukin-6 (IL-6) or erythropoietin (EPO). PURPOSE: The purpose of the present study was to compare endurance exercise-induced hepcidin elevation among "normoxia", "hypoxia" and "combined heat and hypoxia". METHODS: Twelve males (21.5 ± 0.3 years, 168.1 ± 1.2 cm, 63.6 ± 2.0 kg) participated in the present study. They performed 60 min of cycling at 60% of [Formula: see text] in either "heat and hypoxia" (HHYP; FiO2 14.5%, 32 °C), "hypoxia" (HYP; FiO2 14.5%, 23 °C) or "normoxia" (NOR; FiO2 20.9%, 23 °C). After completing the exercise, participants remained in the prescribed conditions for 3 h post-exercise. Blood samples were collected before, immediately and 3 h after exercise. RESULTS: Plasma IL-6 level significantly increased immediately after exercise (P < 0.05), with no significant difference among the trials. A significant elevation in serum EPO was observed 3 h after exercise in hypoxic trials (HHYP and HYP, P < 0.05), with no significant difference between HHYP and HYP. Serum hepcidin level increased 3 h after exercise in all trials (NOR, before 18.3 ± 3.9 and post180 31.2 ± 6.3 ng/mL; HYP, before 13.5 ± 2.5 and post180 23.3 ± 3.6 ng/mL, HHYP; before 15.8 ± 3.3 and post180 31.4 ± 5.3 ng/mL, P < 0.05). However, there was no significant difference among the trials during post-exercise. CONCLUSION: Endurance exercise in "combined heat and hypoxia" did not exacerbate exercise-induced hepcidin elevation compared with the same exercise in "hypoxia" or "normoxia".


Assuntos
Ciclismo/fisiologia , Exercício Físico/fisiologia , Resposta ao Choque Térmico/fisiologia , Hepcidinas/sangue , Hipóxia/fisiopatologia , Eritropoetina/sangue , Humanos , Hipóxia/sangue , Interleucina-6/sangue , Masculino , Resistência Física , Adulto Jovem
8.
Photochem Photobiol Sci ; 18(11): 2740-2747, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573014

RESUMO

Cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) is associated with memory formation and controls cell survival and proliferation via regulation of downstream gene expression in tumorigenesis. As a transcription factor, CREB binds to cAMP response elements. Phosphorylation of CREB triggers transcriptional activation of CREB downstream genes following the interaction of the kinase-inducible domain (KID) of CREB with the KID interaction domain (KIX) of CREB-binding protein. Nevertheless, because of the lack of single-cell analytical techniques, little is known about spatiotemporal regulation of CREB phosphorylation. To analyze CREB activation in single living cells, we developed genetically encoded bioluminescent sensors using luciferase-fragment complementation: the sensors are designed based on KID-KIX interaction with a single-molecule format. The luminescence intensity of the sensor, designated as CREX (a sensor of CREB activation based on KID(CREB)-KIX interaction), increased by phosphorylation of CREB. Moreover, the luminescence intensity of CREX was sufficient to detect CREB activation in live-cell bioluminescence imaging for single-cell analysis because of the higher sensitivity. CREX sensor is expected to contribute to elucidation of the spatiotemporal regulation of CREB phosphorylation by applying single-cell analysis.


Assuntos
Proteína de Ligação a CREB/análise , Medições Luminescentes/métodos , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Colforsina/química , Células HEK293 , Humanos , Luciferases/química , Luciferases/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos/genética , Análise de Célula Única , Imagem com Lapso de Tempo
9.
PLoS Genet ; 12(10): e1006349, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27736879

RESUMO

Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders.


Assuntos
Proteínas de Transporte de Cátions/genética , Proliferação de Células/genética , Estresse do Retículo Endoplasmático/genética , Zinco/metabolismo , Animais , Apoptose/genética , Proteínas de Transporte de Cátions/biossíntese , Retículo Endoplasmático/genética , Células Epiteliais/metabolismo , Trato Gastrointestinal/crescimento & desenvolvimento , Trato Gastrointestinal/metabolismo , Técnicas de Inativação de Genes , Homeostase , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Camundongos , Organoides/crescimento & desenvolvimento , Celulas de Paneth/metabolismo , Células-Tronco/metabolismo
10.
J Cell Mol Med ; 22(6): 3133-3138, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29566294

RESUMO

Serine racemase (SR) is an enzyme that catalyses the synthesis of d-serine, an endogenous coagonist for N-methyl-D-aspartate (NMDA)-type glutamate receptor in the central nervous system. Our previous study demonstrated that SR was expressed in the epidermis of wild-type (WT) mice but not in SR knockout (KO) mice. In addition, SR immune-reactivity was only found in the granular and cornified layers of the epidermis in WT mice. These findings suggested that SR is involved in the differentiation of epidermal keratinocytes and the formation of the skin barrier. However, its role in skin barrier dysfunction such as atopic dermatitis (AD) remains elusive. AD is a chronic inflammatory disease of skin, and the clinical presentation of AD has been reported to be occasionally associated with psychological factors. Therefore, this study examined the content of d-serine in stratum corneum in AD patients and healthy controls using a tape-stripping method. Skin samples were collected from the cheek and upper arm skin of AD patient's lesion and healthy individuals. The d-serine content was significantly increased in the involved skin of AD in comparison with healthy individuals. An immunohistochemical analysis also revealed an increased SR expression in the epidermis of AD patients. Furthermore, the SR expression in cultured human keratinocytes was significantly increased by the stimulation with tumour necrosis factor -α or macrophage migration inhibitory factor. Taken together, these findings suggest that d-serine expressed particularly strongly in AD lesional skin and that the SR expression in the keratinocytes is linked to inflammatory cytokines.


Assuntos
Dermatite Atópica/genética , Inflamação/genética , Racemases e Epimerases/genética , Pele/enzimologia , Adulto , Animais , Diferenciação Celular/genética , Citocinas/genética , Dermatite Atópica/enzimologia , Dermatite Atópica/patologia , Epiderme/enzimologia , Epiderme/patologia , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Inflamação/enzimologia , Inflamação/patologia , Queratinócitos/enzimologia , Queratinócitos/patologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Racemases e Epimerases/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Serina/metabolismo , Pele/patologia , Adulto Jovem
11.
Cell Physiol Biochem ; 51(3): 1461-1479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485861

RESUMO

BACKGROUND/AIMS: The migration of mesenchymal cells is a fundamental cellular process that has been implicated in many pathophysiological conditions and is induced by chemoattractants such as platelet-derived growth factors (PDGFs). However, the regulatory mechanisms shaping this migration remain to be elucidated. METHODS: Here, we prepared mouse skin fibroblasts inactivated for different PDGF receptor genes and systematically measured their chemotactic responses within a gradient of different chemoattractants. RESULTS: We found that PDGFRαß and PDGFRßß dimers were strong inducers of random and directionally-persistent migration, respectively, that was sustained for up to 24 h. MAPK and PI3K were necessary to mediate random and directional migration, respectively. Directional migration was accompanied by abundant ventral stress fiber formation and consistent cell shape with less frequent formation of branch-like processes. CONCLUSION: This is the first systematic study that characterized the chemotaxis mediated by three-different types of PDGFR dimers in mesenchymal cell migration. Our data demonstrate that PDGFR dimer formation is the critical step to determine the specific mode of fibroblast chemotaxis, while the accompanying cytoskeletal remodeling might contribute to migration persistence.


Assuntos
Movimento Celular , Fibroblastos/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Quimiotaxia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Camundongos , Multimerização Proteica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais , Pele/citologia , Pele/metabolismo
12.
Neurobiol Learn Mem ; 149: 58-67, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29408273

RESUMO

Syntenin-1 is a PDZ domain-containing intracellular scaffold protein involved in exosome production, synapse formation, and synaptic plasticity. We tested whether syntenin-1 can regulate learning and memory through its effects on synaptic plasticity. Specifically, we investigated the role of syntenin-1 in contextual and cued fear conditioning and extinction of conditioned fear using syntenin-1 knockout (KO) mice. Genetic disruption of syntenin-1 had little effect on contextual and cued fear memory. However, syntenin-1 KO mice exhibited selective impairment in cued fear extinction retention. This extinction retention deficit in syntenin-1 KO mice was associated with reduced c-Fos-positive neurons in the basolateral amygdala (BLA) and infralimbic cortex (IL) after extinction training and increased c-Fos-positive neurons in the BLA after an extinction retention test. Our results suggest that syntenin-1 plays an important role in extinction of cued fear memory by modulating neuronal activity in the BLA and IL.


Assuntos
Córtex Cerebral/metabolismo , Extinção Psicológica/fisiologia , Medo/fisiologia , Memória/fisiologia , Sinteninas/genética , Tonsila do Cerebelo/metabolismo , Animais , Sinais (Psicologia) , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sinteninas/metabolismo
13.
Bioorg Med Chem Lett ; 28(3): 441-445, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277459

RESUMO

Most of the endogenous free d-serine (about 90%) in the brain is produced by serine racemase (SR). d-Serine in the brain is involved in neurodegenerative disorders and epileptic states as an endogenous co-agonist of the NMDA-type glutamate receptor. Thus, SR inhibitors are expected to be novel therapeutic candidates for the treatment of these disorders. In this study, we solved the crystal structure of wild-type SR, and tried to identify a new inhibitor of SR by in silico screening using the structural information. As a result, we identified two hit compounds by their in vitro evaluations using wild-type SR. Based on the structure of the more potent hit compound 1, we synthesized 15 derivatives and evaluated their inhibitory activities against wild-type SR. Among them, the compound 9C showed relatively high inhibitory potency for wild-type SR. Compound 9C was a more potent inhibitor than compound 24, which was synthesized by our group based upon the structural information of the mutant-type SR.


Assuntos
Amidas/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Racemases e Epimerases/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Racemases e Epimerases/metabolismo , Relação Estrutura-Atividade
14.
Glia ; 65(5): 727-739, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28230289

RESUMO

The abnormal expression and function of myelin-related proteins contribute to nervous system dysfunction associated with neuropsychiatric disorders; however, the underlying mechanism of this remains unclear. We found here that breast carcinoma amplified sequence 1 (BCAS1), a basic protein abundant in the brain, was expressed specifically in oligodendrocytes and Schwann cells, and that its expression level was decreased by demyelination. This suggests that BCAS1 is a novel myelin-associated protein. BCAS1 knockout mice displayed schizophrenia-like behavioral abnormalities and a tendency toward reduced anxiety-like behaviors. Moreover, we found that the loss of BCAS1 specifically induced hypomyelination and the expression of inflammation-related genes in the brain. These observations provide a novel insight into the functional link between oligodendrocytes and inflammation and/or abnormal behaviors.


Assuntos
Encéfalo/metabolismo , Doenças Desmielinizantes/genética , Proteínas de Neoplasias/metabolismo , Oligodendroglia/metabolismo , Animais , Encéfalo/patologia , Doenças Desmielinizantes/patologia , Inflamação/genética , Camundongos Knockout , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Proteínas de Neoplasias/deficiência , Esquizofrenia/genética , Esquizofrenia/patologia , Ativação Transcricional/genética , Regulação para Cima
15.
BMC Neurosci ; 18(1): 18, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28114886

RESUMO

BACKGROUND: Bioluminescence imaging (BLI) is a powerful technique for monitoring the temporal and spatial dynamics of gene expression in the mouse brain. However, the black fur, skin pigmentation and hair regrowth after depilation of mouse interfere with BLI during developmental and daily examination. The aim of this study was to extend the application of Arc-Luc transgenic (Tg) mice to the BLI of neuronal activity in the mouse brain by introducing the hairless (HL) gene and to examine Arc-Luc expression at various developmental stages without interference from black fur, skin pigmentation, and hair regrowth. RESULTS: The Arc-Luc Tg HL mice were established by crossing the Tg C57BL/6 mouse strain with the HL mouse strain. Under physiological and pathological conditions, BLI was performed to detect the signal intensity changes at various developmental stages and at an interval of <7 days. The established Arc-Luc Tg HL mice exhibited clear and stable photon signals from the brain without interference during development. After surgical monocular deprivation during visual-critical period, large signal intensity changes in bioluminescence were observed in the mouse visual cortex. Exposure of mice to a novel object changed the photon distribution in the caudal and rostral cerebral areas. The temporal pattern of kainic-acid-induced Arc-Luc expression showed biphasic changes in signal intensity over 24 h. CONCLUSIONS: This study showed the advantages of using the mutant HL gene in BLI of Arc expression in the mouse brain at various developmental stages. Thus, the use of the Arc-Luc Tg HL mice enabled the tracking of neuronal-activity-dependent processes over a wide range from a focal area to the entire brain area with various time windows.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Medições Luminescentes , Modelos Animais , Proteínas do Tecido Nervoso/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Período Crítico Psicológico , Proteínas do Citoesqueleto/genética , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Caínico/farmacologia , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Camundongos Pelados , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Privação Sensorial/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transtornos da Visão/fisiopatologia , Percepção Visual/fisiologia
16.
Am J Pathol ; 186(5): 1081-91, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26945107

RESUMO

Glioma is an aggressive and incurable disease, and is frequently accompanied by augmented platelet-derived growth factor (PDGF) signaling. Overexpression of PDGF-B ligand characterizes a specific subclass of glioblastoma multiforme, but the significance of the ligand remains to be elucidated. For this end, we implanted a glioma-cell line transfected with PDGF-BB-overexpressing vector (GL261-PDGF-BB) or control vector (GL261-vector) into wild-type mouse brain, and examined the effect of glioma-derived PDGF on the tumor microenvironment. The volume of GL261-PDGF-BB rapidly increased compared with GL261-vector. Recruitment of many PDGF receptor (PDGFR)-α and Olig2-positive oligodendrocyte precursor cells and frequent hemorrhages were observed in GL261-PDGF-BB but not in GL261-vector. We then implanted GL261-PDGF-BB into the mouse brain with and without Pdgfra gene inactivation, corresponding to PDGFRα-knockout (KO) and Flox mice, respectively. The recruitment of oligodendrocyte precursor cells was largely suppressed in PDGFRα-KO than in Flox, whereas the volume of GL261-PDGF-BB was comparable between the two genotypes. Frequent hemorrhage and increased IgG-leakage were associated with aberrant vascular structures within the area where many recruited oligodendrocyte precursor cells accumulated in Flox. In contrast, these vascular phenotypes were largely normalized in PDGFRα-KO. Increased matrix metalloproteinase-9 in recruited oligodendrocyte precursor cells and decreased claudin-5 in vasculature may underlie the vascular abnormality. Glioma-derived PDGF-B signal induces cancer stroma characteristically seen in high-grade glioma, and should be therapeutically targeted to improve cancer microenvironment.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Oligodendroglia/fisiologia , Proteínas Proto-Oncogênicas c-sis/fisiologia , Células-Tronco/fisiologia , Animais , Antineoplásicos Hormonais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Permeabilidade Capilar/fisiologia , Linhagem Celular Tumoral , Hemorragia Cerebral/etiologia , Colágeno/fisiologia , Feminino , Técnicas de Inativação de Genes , Vetores Genéticos , Glioblastoma/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Fenótipo , Tamoxifeno/farmacologia , Transfecção , Carga Tumoral
17.
Stem Cells ; 34(3): 685-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26435273

RESUMO

The neuroprotective agents and induction of endogenous neurogenesis remain to be the urgent issues to be established for the care of cerebral stroke. Platelet-derived growth factor receptor beta (PDGFR-ß) is mainly expressed in neural stem/progenitor cells (NSPCs), neurons and vascular pericytes of the brain; however, the role in pathological neurogenesis remains elusive. To this end, we examined the role of PDGFR-ß in the migration and proliferation of NSPCs after stroke. A transient middle cerebral-arterial occlusion (MCAO) was introduced into the mice with conditional Pdgfrb-gene inactivation, including N-PRß-KO mice where the Pdgfrb-gene was mostly inactivated in the brain except that in vascular pericytes, and E-PRß-KO mice with tamoxifen-induced systemic Pdgfrb-gene inactivation. The migration of the DCX(+) neuroblasts from the subventricular zone toward the ischemic core was highly increased in N-PRß-KO, but not in E-PRß-KO as compared to Pdgfrb-gene preserving control mice. We showed that CXCL12, a potent chemoattractant for CXCR4-expressing NSPCs, was upregulated in the ischemic lesion of N-PRß-KO mice. Furthermore, integrin α3 intrinsically expressed in NSPCs that critically mediates extracellular matrix-dependent migration, was upregulated in N-PRß-KO after MCAO. NSPCs isolated from N-PRß-KO rapidly migrated on the surface coated with collagen type IV or fibronectin that are abundant in vascular niche and ischemic core. PDGFR-ß was suggested to be critically involved in pathological neurogenesis through the regulation of lesion-derived chemoattractant as well as intrinsic signal of NSPCs, and we believe that a coordinated regulation of these molecular events may be able to improve neurogenesis in injured brain for further functional recovery.


Assuntos
Quimiocina CXCL12/genética , Neurogênese/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Acidente Vascular Cerebral/genética , Animais , Movimento Celular/genética , Proliferação de Células/genética , Quimiocina CXCL12/biossíntese , Proteína Duplacortina , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais , Acidente Vascular Cerebral/patologia
18.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3378-3387, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27585868

RESUMO

BACKGROUND: Serine racemase (SR) catalyzes the production of d-serine, a co-agonist of the N-methyl-d-aspartate receptor (NMDAR). A previous report shows the contribution of SR in the NMDAR-mediated neuronal cell death process. METHODS AND RESULTS: To analyze the intrinsic role of SR in the cell death process, we established the epithelial human embryonic kidney 293T (HEK293T) cell lines expressing wild-type SR (SR-WT), catalytically inactive mutant SR (SR-K56G), and catalytically hyperactive mutant SR (SR-Q155D). To these cell lines, staurosporine (STS), which induces apoptosis, was introduced. The cells expressing SR-WT and SR-Q155D showed resistance to STS-induced apoptosis, compared with nontransfected HEK293T cells and cells expressing SR-K56G. The SR-WT cells also showed a significant higher viability than the SR-QD cells. Furthermore, we detected elevated phosphorylation levels of Bcl-2 at serine-70 and Akt at serine-473 and threonine-308, which are related to cell survival, in the cells expressing SR-WT and SR-Q155D. From the results of metabolite analysis, we found elevated levels of acetyl CoA and ATP in cells expressing SR-WT. CONCLUSION: Because SR has two enzymatic activities, namely, racemization and α, ß-elimination, and SR-Q155D shows enhanced racemization and reduced α, ß-elimination activities, we concluded that the racemization reaction catalyzed by SR may have a more protective role against apoptosis than the α, ß-elimination reaction. Moreover, both of these activities are important for maximal survival and elevated levels of acetyl CoA and ATP. GENERAL SIGNIFICANCE: Our findings reveal the NMDAR-independent roles of SR in metabolism and cell survival.


Assuntos
Apoptose , Metabolismo , Racemases e Epimerases/metabolismo , Animais , Caspase 3/metabolismo , Citocromos c/metabolismo , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , L-Serina Desidratase/metabolismo , Metabolômica , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Estaurosporina/farmacologia , Transfecção , Proteína de Morte Celular Associada a bcl/metabolismo
19.
Bioorg Med Chem ; 25(14): 3736-3745, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28533113

RESUMO

Serine racemase (SRR) is an enzyme that produces d-serine from l-serine. d-Serine acts as an endogenous coagonist of NMDA-type glutamate receptors (NMDARs), which regulate many physiological functions. Over-activation of NMDARs induces excitotoxicity, which is observed in many neurodegenerative disorders and epilepsy states. In our previous works on the generation of SRR gene knockout (Srr-KO) mice and its protective effects against NMDA- and Aß peptide-induced neurodegeneration, we hypothesized that the regulation of NMDARs' over-activation by inhibition of SRR activity is one such therapeutic strategy to combat these disease states. In the previous study, we performed in silico screening to identify four compounds with inhibitory activities against recombinant SRR. Here, we synthesized 21 derivatives of candidate 1, one of four hit compounds, and performed screening by in vitro evaluations. The derivative 13J showed a significantly lower IC50 value in vitro, and suppressed neuronal over-activation in vivo.


Assuntos
Acrilamidas/química , Inibidores Enzimáticos/química , Substâncias Protetoras/química , Racemases e Epimerases/antagonistas & inibidores , Tioureia/análogos & derivados , Acrilamidas/administração & dosagem , Acrilamidas/síntese química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligação de Hidrogênio , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Imagem Óptica , Substâncias Protetoras/síntese química , Substâncias Protetoras/farmacologia , Estrutura Terciária de Proteína , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Tioureia/administração & dosagem , Tioureia/síntese química , Tioureia/química
20.
J Neurosci ; 35(14): 5606-24, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855176

RESUMO

Although coordinated molecular signaling through excitatory and modulatory neurotransmissions is critical for the induction of immediate early genes (IEGs), which lead to effective changes in synaptic plasticity, the intracellular mechanisms responsible remain obscure. Here we measured the expression of IEGs and used bioluminescence imaging to visualize the expression of Bdnf when GPCRs, major neuromodulator receptors, were stimulated. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor (PAC1), a Gαs/q-protein-coupled GPCR, with PACAP selectively activated the calcineurin (CN) pathway that is controlled by calcium signals evoked via NMDAR. This signaling pathway then induced the expression of Bdnf and CN-dependent IEGs through the nuclear translocation of CREB-regulated transcriptional coactivator 1 (CRTC1). Intracerebroventricular injection of PACAP and intraperitoneal administration of MK801 in mice demonstrated that functional interactions between PAC1 and NMDAR induced the expression of Bdnf in the brain. Coactivation of NMDAR and PAC1 synergistically induced the expression of Bdnf attributable to selective activation of the CN pathway. This CN pathway-controlled expression of Bdnf was also induced by stimulating other Gαs- or Gαq-coupled GPCRs, such as dopamine D1, adrenaline ß, CRF, and neurotensin receptors, either with their cognate agonists or by direct stimulation of the protein kinase A (PKA)/PKC pathway with chemical activators. Thus, the GPCR-induced expression of IEGs in coordination with NMDAR might occur via the selective activation of the CN/CRTC1/CREB pathway under simultaneous excitatory and modulatory synaptic transmissions in neurons if either the Gαs/adenylate cyclase/PKA or Gαq/PLC/PKC-mediated pathway is activated.


Assuntos
Calcineurina/metabolismo , Cálcio/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Calcineurina/genética , Inibidores de Calcineurina/farmacologia , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Embrião de Mamíferos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA