Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 211: 145-157, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043869

RESUMO

It is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions. We have found that hypoxia induced an increase in H2O2 production in adult cardiomyocytes, while neonatal cardiomyocytes experienced a decrease in H2O2 levels. This finding correlates with our observation of the difference between the electron transport chain (ETC) properties and mitochondria amount in adult and neonatal cells. We demonstrated that in adult cardiomyocytes hypoxia caused the significant increase in the ETC loading with electrons compared to normoxia. On the contrary, in neonatal cardiomyocytes ETC loading with electrons was similar under both normoxic and hypoxic conditions that could be due to ETC non-functional state and the absence of the electrons transfer to O2 under normoxia. In addition to the variations in H2O2 production, we also noted consistent pH dynamics under hypoxic conditions. Notably, the pH levels exhibited a similar decrease in both cell types, thus, acidosis is a more universal cellular response to hypoxia. We also demonstrated that the amount of mitochondria and the levels of cardiac isoforms of troponin I, troponin T, myoglobin and GAPDH were significantly higher in adult cardiomyocytes compared to neonatal ones. Remarkably, we found out that under hypoxia, the levels of cardiac isoforms of troponin T, myoglobin, and GAPDH were elevated in adult cardiomyocytes, while their level in neonatal cells remained unchanged. Obtained data contribute to the understanding of the mechanisms of neonatal cardiomyocytes' resistance to hypoxia and the ability to maintain the metabolic homeostasis in contrast to adult ones.


Assuntos
Peróxido de Hidrogênio , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Peróxido de Hidrogênio/metabolismo , Mioglobina , Troponina T/metabolismo , Hipóxia Celular , Hipóxia/metabolismo , Oxirredução , Isoformas de Proteínas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-39086238

RESUMO

The lack of oxygen (O2) causes changes in the cell functioning. Modeling hypoxic conditions in vitro is challenging given that different cell types exhibit different sensitivities to tissue O2 levels. We present an effective in vivo platform for assessing various tissue and organ parameters in Danio rerio larvae under acute hypoxic conditions. Our system allows simultaneous positioning of multiple individuals within a chamber where O2 level in the water can be precisely and promptly regulated, all while conducting microscopy. We applied this approach in combination with a genetically encoded pH-biosensor SypHer3s and a highly H2O2-sensitive Hyper7 biosensor. Hypoxia causes H2O2 production in areas of brain, heart and skeletal muscles, exclusively in the mitochondrial matrix; it is noteworthy that H2O2 does not penetrate into the cytosol and is neutralized in the matrix upon reoxygenation. Hypoxia causes pronounced tissue acidosis, expressed by a decrease in pH by 0.4-0.6 units everywhere. Using imaging photoplethysmography, we measured in D.rerio fry real-time heart rate decrease under conditions of hypoxia and subsequent reoxygenation. Our observations in this experimental system lead to the hypothesis that mitochondria are the only source of H2O2 in cells of D.rerio under hypoxia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA