Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 8, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175305

RESUMO

Multiple sclerosis (MS) is a chronic neuroinflammatory disease that involves both white and gray matter. Although gray matter damage is a major contributor to disability in MS patients, conventional clinical magnetic resonance imaging (MRI) fails to accurately detect gray matter pathology and establish a clear correlation with clinical symptoms. Using magnetic resonance elastography (MRE), we previously reported global brain softening in MS and experimental autoimmune encephalomyelitis (EAE). However, it needs to be established if changes of the spatiotemporal patterns of brain tissue mechanics constitute a marker of neuroinflammation. Here, we use advanced multifrequency MRE with tomoelastography postprocessing to investigate longitudinal and regional inflammation-induced tissue changes in EAE and in a small group of MS patients. Surprisingly, we found reversible softening in synchrony with the EAE disease course predominantly in the cortex of the mouse brain. This cortical softening was associated neither with a shift of tissue water compartments as quantified by T2-mapping and diffusion-weighted MRI, nor with leukocyte infiltration as seen by histopathology. Instead, cortical softening correlated with transient structural remodeling of perineuronal nets (PNNs), which involved abnormal chondroitin sulfate expression and microgliosis. These mechanisms also appear to be critical in humans with MS, where tomoelastography for the first time demonstrated marked cortical softening. Taken together, our study shows that neuroinflammation (i) critically affects the integrity of PNNs in cortical brain tissue, in a reversible process that correlates with disease disability in EAE, (ii) reduces the mechanical integrity of brain tissue rather than leading to water accumulation, and (iii) shows similar spatial patterns in humans and mice. These results raise the prospect of leveraging MRE and quantitative MRI for MS staging and monitoring treatment in affected patients.


Assuntos
Técnicas de Imagem por Elasticidade , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Animais , Camundongos , Doenças Neuroinflamatórias , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Água
2.
Adv Sci (Weinh) ; : e2402338, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874205

RESUMO

Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.

3.
Int J Biol Macromol ; 230: 123214, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634800

RESUMO

It remains uncertain how brain glycosaminoglycans (GAGs) contribute to the progression of inflammatory disorders like multiple sclerosis (MS). We investigated here neuroinflammation-mediated changes in GAG composition and metabolism using the mouse model of experimental autoimmune encephalomyelitis (EAE) and sham-immunized mice as controls. Cerebellum, mid- and forebrain at different EAE phases were investigated using gene expression analysis (microarray and RT-qPCR) as well as HPLC quantification of CS and hyaluronic acid (HA). The cerebellum was the most affected brain region showing a downregulation of Bcan, Cspg5, and an upregulation of Dse, Gusb, Hexb, Dcn and Has2 at peak EAE. Upregulation of genes involved in GAG degradation as well as synthesis of HA and decorin persisted from onset to peak, and diminished at remission, suggesting a severity-related decrease in CS and increments in HA. Relative disaccharide quantification confirmed a 3.6 % reduction of CS-4S at peak and a normalization during remission, while HA increased in both phases by 26.1 % and 17.6 %, respectively. Early inflammatory processes led to altered GAG metabolism in early EAE stages and subsequent partially reversible changes in CS-4S and in HA. Targeting early modifications in CS could potentially mitigate progression of EAE/MS.


Assuntos
Encefalite , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Ácido Hialurônico/farmacologia , Glicosaminoglicanos/metabolismo , Encefalomielite Autoimune Experimental/genética , Sulfatos de Condroitina/metabolismo
4.
Invest Radiol ; 57(8): 502-509, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35195086

RESUMO

OBJECTIVES: Tissue stiffness can guide medical diagnoses and is exploited as an imaging contrast in elastography. However, different elastography devices show different liver stiffness values in the same subject, hindering comparison of values and establishment of system-independent thresholds for disease detection. There is a need for standardized phantoms that specifically address the viscosity-related dispersion of stiffness over frequency. To improve standardization of clinical elastography across devices and platforms including ultrasound and magnetic resonance imaging (MRI), a comprehensively characterized phantom is introduced that mimics the dispersion of stiffness of the human liver and can be generated reproducibly. MATERIALS AND METHODS: The phantom was made of linear polymerized polyacrylamide (PAAm) calibrated to the viscoelastic properties of healthy human liver in vivo as reported in the literature. Stiffness dispersion was analyzed using the 2-parameter springpot model fitted to the dispersion of shear wave speed of PAAm, which was measured by shear rheometry, ultrasound-based time-harmonic elastography, clinical magnetic resonance elastography (MRE), and tabletop MRE in the frequency range of 5 to 3000 Hz. Imaging parameters for ultrasound and MRI, reproducibility, aging behavior, and temperature dependency were assessed. In addition, the frequency bandwidth of shear wave speed of clinical elastography methods (Aplio i900, Canon; Acuson Sequoia, Siemens; FibroScan, EchoSense) was characterized. RESULTS: Within the entire frequency range analyzed in this study, the PAAm phantom reproduced well the stiffness dispersion of human liver in vivo despite its fluid properties under static loading (springpot stiffness parameter, 2.14 [95% confidence interval, 2.08-2.19] kPa; springpot powerlaw exponent, 0.367 [95% confidence interval, 0.362-0.373]). Imaging parameters were close to those of liver in vivo with only slight variability in stiffness values of 0.5% (0.4%, 0.6%), 4.1% (3.9%, 4.5%), and -0.63% (-0.67%, -0.58%), respectively, between batches, over a 6-month period, and per °C increase in temperature. CONCLUSIONS: The liquid-liver phantom has useful properties for standardization and development of liver elastography. First, it can be used across clinical and experimental elastography devices in ultrasound and MRI. Second, being a liquid, it can easily be adapted in size and shape to specific technical requirements, and by adding inclusions and scatterers. Finally, because the phantom is based on noncrosslinked linear PAAm constituents, it is easy to produce, indicating potential widespread use among researchers and vendors to standardize liver stiffness measurements.


Assuntos
Técnicas de Imagem por Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
5.
Sci Rep ; 12(1): 16723, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202964

RESUMO

The hippocampus is a very heterogeneous brain structure with different mechanical properties reflecting its functional variety. In particular, adult neurogenesis in rodent hippocampus has been associated with specific viscoelastic properties in vivo and ex vivo. Here, we study the microscopic mechanical properties of hippocampal subregions using ex vivo atomic force microscopy (AFM) in correlation with the expression of GFP in presence of the nestin promoter, providing a marker of neurogenic activity. We further use magnetic resonance elastography (MRE) to investigate whether in vivo mechanical properties reveal similar spatial patterns, however, on a much coarser scale. AFM showed that tissue stiffness increases with increasing distance from the subgranular zone (p = 0.0069), and that stiffness is 39% lower in GFP than non-GFP regions (p = 0.0004). Consistently, MRE showed that dentate gyrus is, on average, softer than Ammon´s horn (shear wave speed = 3.2 ± 0.2 m/s versus 4.4 ± 0.3 m/s, p = 0.01) with another 3.4% decrease towards the subgranular zone (p = 0.0001). The marked reduction in stiffness measured by AFM in areas of high neurogenic activity is consistent with softer MRE values, indicating the sensitivity of macroscopic mechanical properties in vivo to micromechanical structures as formed by the neurogenic niche of the hippocampus.


Assuntos
Técnicas de Imagem por Elasticidade , Animais , Hipocampo/patologia , Imageamento por Ressonância Magnética , Camundongos , Microscopia de Força Atômica , Nestina
6.
Front Neurosci ; 15: 701308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497486

RESUMO

Neuroinflammatory processes occurring during multiple sclerosis cause disseminated softening of brain tissue, as quantified by in vivo magnetic resonance elastography (MRE). However, inflammation-mediated tissue alterations underlying the mechanical integrity of the brain remain unclear. We previously showed that blood-brain barrier (BBB) disruption visualized by MRI using gadolinium-based contrast agent (GBCA) does not correlate with tissue softening in active experimental autoimmune encephalomyelitis (EAE). However, it is unknown how confined BBB changes and other inflammatory processes may determine local elasticity changes. Therefore, we aim to elucidate which inflammatory hallmarks are determinant for local viscoelastic changes observed in EAE brains. Hence, novel multifrequency MRE was applied in combination with GBCA-based MRI or very small superparamagnetic iron oxide particles (VSOPs) in female SJL mice with induced adoptive transfer EAE (n = 21). VSOPs were doped with europium (Eu-VSOPs) to facilitate the post-mortem analysis. Accumulation of Eu-VSOPs, which was previously demonstrated to be sensitive to immune cell infiltration and ECM remodeling, was also found to be independent of GBCA enhancement. Following registration to a reference brain atlas, viscoelastic properties of the whole brain and areas visualized by either Gd or VSOP were quantified. MRE revealed marked disseminated softening across the whole brain in mice with established EAE (baseline: 3.1 ± 0.1 m/s vs. EAE: 2.9 ± 0.2 m/s, p < 0.0001). A similar degree of softening was observed in sites of GBCA enhancement i.e., mainly within cerebral cortex and brain stem (baseline: 3.3 ± 0.4 m/s vs. EAE: 3.0 ± 0.5 m/s, p = 0.018). However, locations in which only Eu-VSOP accumulated, mainly in fiber tracts (baseline: 3.0 ± 0.4 m/s vs. EAE: 2.6 ± 0.5 m/s, p = 0.023), softening was more pronounced when compared to non-hypointense areas (percent change of stiffness for Eu-VSOP accumulation: -16.81 ± 16.49% vs. for non-hypointense regions: -5.85 ± 3.81%, p = 0.048). Our findings suggest that multifrequency MRE is sensitive to differentiate between local inflammatory processes with a strong immune cell infiltrate that lead to VSOP accumulation, from disseminated inflammation and BBB leakage visualized by GBCA. These pathological events visualized by Eu-VSOP MRI and MRE may include gliosis, macrophage infiltration, alterations of endothelial matrix components, and/or extracellular matrix remodeling. MRE may therefore represent a promising imaging tool for non-invasive clinical assessment of different pathological aspects of neuroinflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA