Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 101-105, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150536

RESUMO

Metal organic frameworks (MOFs), a class of porous crystalline materials consisting of metal-based nodes and organic linkers, have emerged as a promising platform for photocatalysis due to their ultrahigh functional surface area, customizable topologies, and tunable energetics. While interesting photochemistry has been reported, the related photoinduced structural dynamics of MOFs remains unclear. The consensus is that the coordination bonds between MOF nodes and linkers are considered static during photoexcitation, while the open-metal sites on the nodes are taken as the key active sites for catalysis. In this work, through a complementary time-resolved visible and infrared (IR) spectroscopic investigation, along with computational studies, we report for the first time light-induced structural bond dissociation (COO-M) and reformation in an iron-oxo framework, MIL-101(Fe). The probed excited state displayed ligand-to-metal charge transfer (LMCT) characteristics and exhibited a ca. 30 µs lifetime. The incredibly long excited-state lifetime led us to probe potential structural rearrangements that facilitated charge separation in MIL-101(Fe). By probing the vibrational fingerprints of the carboxylate linker upon LMCT photoexcitation, we observed the reversible transition of the carboxylate-Fe bond from a bidentate bridging mode to a monodentate mode, indicating the partial dissociation of the carboxylate ligand. Importantly, the bidentate configuration is recovered on the same time scale of the excited state lifetimes as probed via visible transient absorption spectroscopy. The elucidated photoinduced configurational dynamics provides a foundation for an in-depth understanding of MOF-based photocatalytic mechanisms.

2.
J Am Chem Soc ; 146(7): 4309-4313, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330249

RESUMO

To date, spectroscopic characterization of porphyrin-based metal organic frameworks (MOFs) has relied almost exclusively on ensemble techniques, which provide only structurally averaged insight into the functional properties of these promising photochemical platforms. This work employs time-resolved pump-probe microscopy to probe ultrafast dynamics in PCN-222 MOF single crystals. The simultaneous high spatial and temporal resolution of the technique enables the correlation of spectroscopic observables to both inter- and intracrystal structural heterogeneity. The pump-probe measurements show that significant differences in the excited state lifetime exist between individual PCN-222 crystals of an ensemble. On a single PCN-222 crystal, differences in excited state lifetime and photoluminescence quantum yield are found to correlate to microscale structural defects introduced at crystallization. Pump probe microscopy also enables the direct measurement of excited state transport. Imaging of exciton transport on individual MOF crystals reveals rapid, but subdiffusive exciton transport which slows on the 10s of ps time scale. Time-averaged exciton diffusion coefficients over the first 200 ps span a range of 0.27 to 1.0 cm2/s, indicating that excited states are rapidly transported through the porphyrin network of PCN-222 before being trapped. Together, these single-particle-resolved measurements provide important new insight into the role played by structural defects on the photochemical functionality of porphyrin-based MOFs.

3.
J Am Chem Soc ; 145(8): 4589-4600, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795004

RESUMO

Metal-organic frameworks (MOFs) that display photoredox activity are attractive materials for sustainable photocatalysis. The ability to tune both their pore sizes and electronic structures based solely on the choice of the building blocks makes them amenable for systematic studies based on physical organic and reticular chemistry principles with high degrees of synthetic control. Here, we present a library of eleven isoreticular and multivariate (MTV) photoredox-active MOFs, UCFMOF-n, and UCFMTV-n-x% with a formula Ti6O9[links]3, where the links are linear oligo-p-arylene dicarboxylates with n number of p-arylene rings and x mol% of multivariate links containing electron-donating groups (EDGs). The average and local structures of UCFMOFs were elucidated from advanced powder X-ray diffraction (XRD) and total scattering tools, consisting of parallel arrangements of one-dimensional (1D) [Ti6O9(CO2)6]∞ nanowires connected through the oligo-arylene links with the topology of the edge-2-transitive rod-packed hex net. Preparation of an MTV library of UCFMOFs with varying link sizes and amine EDG functionalization enabled us to study both their steric (pore size) and electronic (highest occupied molecular orbital-lowest unoccupied molecular orbital, HOMO-LUMO, gap) effects on the substrate adsorption and photoredox transformation of benzyl alcohol. The observed relationship between the substrate uptake and reaction kinetics with the molecular traits of the links indicates that longer links, as well as increased EDG functionalization, exhibit impressive photocatalytic rates, outperforming MIL-125 by almost 20-fold. Our studies relating photocatalytic activity with pore size and electronic functionalization demonstrate how these are important parameters to consider when designing new MOF photocatalysts.

4.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240055

RESUMO

In cystic fibrosis (CF), pulmonary infection with Pseudomonas aeruginosa is a cause of increased morbidity and mortality, especially in patients for whom infection becomes chronic and there is reliance on long-term suppressive therapies. Current antimicrobials, though varied mechanistically and by mode of delivery, are inadequate not only due to their failure to eradicate infection but also because they do not halt the progression of lung function decline over time. One of the reasons for this failure is thought to be the biofilm mode of growth of P. aeruginosa, wherein self-secreted exopolysaccharides (EPSs) provide physical protection against antibiotics and an array of niches with resulting metabolic and phenotypic heterogeneity. The three biofilm-associated EPSs secreted by P. aeruginosa (alginate, Psl, and Pel) are each under investigation and are being exploited in ways that potentiate antibiotics. In this review, we describe the development and structure of P. aeruginosa biofilms before examining each EPS as a potential therapeutic target for combating pulmonary infection with P. aeruginosa in CF, with a particular focus on the current evidence for these emerging therapies and barriers to bringing these therapies into clinic.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo , Fibrose Cística/tratamento farmacológico , Alginatos/metabolismo , Biofilmes , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Farmacêuticos/uso terapêutico , Pulmão , Infecções por Pseudomonas/tratamento farmacológico
5.
J Am Chem Soc ; 144(39): 17723-17736, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36126182

RESUMO

Metal organic frameworks (MOFs), a class of coordination polymers, gained popularity in the late 1990s with the efforts of Omar Yaghi, Richard Robson, Susumu Kitagawa, and others. The intrinsic porosity of MOFs made them a clear platform for gas storage and separation. Indeed, these applications have dominated the vast literature in MOF synthesis, characterization, and applications. However, even in those early years, there were hints to more advanced applications in light-MOF interactions and catalysis. This perspective focuses on the combination of both light-MOF interactions and catalysis: MOF artificial photosynthetic assemblies. Light absorption, charge transport, H2O oxidation, and CO2 reduction have all been previously observed in MOFs; however, work toward a fully MOF-based approach to artificial photosynthesis remains out of reach. Discussed here are the current limitations with MOF-based approaches: diffusion through the framework, selectivity toward high value products, lack of integrated studies, and stability. These topics provide a roadmap for the future development of fully integrated MOF-based assemblies for artificial photosynthesis.


Assuntos
Estruturas Metalorgânicas , Dióxido de Carbono , Catálise , Fotossíntese , Polímeros
6.
Inorg Chem ; 61(22): 8585-8591, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35613459

RESUMO

Metal-organic frameworks (MOFs) have shown great success in aqueous-phase hydrolysis of nerve agents, with some even showing promise in the gas phase. However, both aqueous-phase reactivity and gas-phase reactivity are hindered because of the binding of the hydrolyzed products to the MOF nodes in a stable, bridging configuration, which limits turnover. Single transition-metal atoms in MOFs have been a growing field of interest for catalytic applications, and single atoms have been proposed to prevent the unwanted bridged conformation and increase catalytic turnover. To date, there has been little experimental evidence to support the hypothesis. Herein, we report two copper single atom-modified UiO-66 MOFs for nerve-agent simulant degradation. Despite the capping of highly active Zr4+ nodes with fewer Lewis acidic Cun+ atoms, the reactivity of both CuMOFs approaches that of native UiO-66 under aqueous conditions. Computational studies reveal that the Cu coordination environment impairs product inhibition with respect to the native MOF.


Assuntos
Estruturas Metalorgânicas , Agentes Neurotóxicos , Compostos Organometálicos , Cobre , Estruturas Metalorgânicas/química , Agentes Neurotóxicos/química , Ácidos Ftálicos
7.
Inorg Chem ; 61(17): 6604-6611, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35446572

RESUMO

Metal-organic cages are a class of supramolecular structures that often require the careful selection of organic linkers and metal nodes. Of this class, few examples of metal-organic cages exist where the nodes are composed of main group metals. Herein, we have prepared an aluminum-based metal-organic cage, H8[Al8(pdc)8(OAc)8O4] (Al-pdc-AA), using inexpensive and commercially available materials. The cage formation was achieved via solvothermal self-assembly of solvated aluminum and pyridine-dicarboxylic linkers in the presence of a capping agent, acetic acid. The obtained supramolecular structure was characterized by single-crystal X-ray diffraction (SCXRD), thermogravimetric analysis, and NMR spectroscopy. Based on crystal structure and computational analyses, the cage has a 3.7 Å diameter electron-rich cavity suitable for the binding of cations such as cesium (ionic radius of 1.69 Å). The host-guest interactions were probed with 1H and 133Cs NMR spectroscopy in DMSO, where at low concentrations, Cs+ binds to Al-pdc-AA in a 1:1 ratio. The binding site was identified from the crystal structure of CsH7[Al8(pdc)8(OAc)8O4] (Cs+⊂Al-pdc-AA), and a binding affinity of ∼106-107 M-1 was determined from NMR titration experiments. The Al-pdc-AA showed improved selectivity for cesium binding over alkali metal cations (Cs+ > Rb+ > K+ ≫ Na+ ∼ Li+). Collectively, the study reports a novel aluminum cage that can serve as a promising host for efficient and selective cesium removal.

8.
Chem Soc Rev ; 50(20): 11530-11558, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661217

RESUMO

The ubiquity of metal-organic frameworks in recent scientific literature underscores their highly versatile nature. MOFs have been developed for use in a wide array of applications, including: sensors, catalysis, separations, drug delivery, and electrochemical processes. Often overlooked in the discussion of MOF-based materials is the mass transport of guest molecules within the pores and channels. Given the wide distribution of pore sizes, linker functionalization, and crystal sizes, molecular diffusion within MOFs can be highly dependent on the MOF-guest system. In this review, we discuss the major factors that govern the mass transport of molecules through MOFs at both the intracrystalline and intercrystalline scale; provide an overview of the experimental and computational methods used to measure guest diffusivity within MOFs; and highlight the relevance of mass transfer in the applications of MOFs in electrochemical systems, separations, and heterogeneous catalysis.

9.
Faraday Discuss ; 225: 371-383, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107542

RESUMO

Metal-organic frameworks (MOFs) provide a suitable platform for stable and efficient heterogeneous photoelectrochemical oxidation catalysis due to their highly ordered structure, large surface area, and synthetic tunability. Herein, a mixed-linker MOF comprising of a photosensitizer [Ru(dcbpy)(bpy)2]2+ (bpy = 2,2'-bipyridine, dcbpy = 5,5'-dicarboxy-2,2'-bipyridine) and catalyst [Ru(tpy)(dcbpy)Cl]+ (tpy = 2,2':6',2''-terpyridine) that were incorporated into the UiO-67 framework and grown as thin films on a TiO2-coated, fluorine-doped tin oxide (FTO) electrode (RuB-RuTB-UiO-67/TiO2/FTO). When used as an electrode for the photoelectrochemical oxidation of benzyl alcohol, the mixed-linker MOF film showed a faradaic efficiency of 34%, corresponding to a 3-fold increase in efficiency relative to the RuB-UiO-67/TiO2/FTO control. This increase in catalytic efficiency is ascribed to the activation of RuTB moieties via oxidation by photogenerated RuIIIB. Transient absorption spectroscopy revealed the delayed appearance of RuIIITB* or RuIIITB formation, occurring with a lifetime of 21 ns, due to energy and/or electron transfer. The recovery kinetics of the charge separated state was increased (283 µs) in comparison to single-component control experiments (105 µs for RuB-UiO-67/TiO2/FTO and 7 µs for RuTB-UiO-67/TiO2/FTO) indicating a cooperative effect that could be exploited in chromophore/catalyst MOF motifs.

10.
Inorg Chem ; 60(21): 16378-16387, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672622

RESUMO

Defect engineering in metal-organic frameworks (MOFs) has recently become an area of significant research due to the possibility of enhancing material properties such as internal surface area and catalytic activity while maintaining stable 3D structures. Through a modulator screening study, the model Zr4+ MOF, UiO-66, has been synthesized with control of particle sizes (100-1900 nm) and defect levels (2-24%). By relating these properties, two series were identified where one property remained constant, allowing for independent analysis of the defect level or particle size, which frequently change coincident with the modulator choice. The series were used to compare UiO-66 reactivity for the hydrolysis of a chemical warfare agent simulant, dimethyl 4-nitrophenylphosphate (DMNP). The rate of DMNP hydrolysis displayed high dependence on the external surface area, supporting a reaction dominated by surface interactions. Moderate to high concentrations of defects (14-24%) allow for the accessibility of some interior MOF nodes but do not substantially promote diffusion into the framework. Individual control of defect levels and particle sizes through modulator selection may provide useful materials for small molecular catalysis and provide a roadmap for similar engineering of other zirconium frameworks.

11.
Inorg Chem ; 60(14): 10439-10450, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34190552

RESUMO

The porphyrinic metal-organic framework, PCN-222, exhibits anisotropic growth behavior to form nanorods and microrods with aspect ratios 3 < x < 94. Control of microrod aspect ratios has been demonstrated through the identification of several factors that dictate crystal growth, particularly the concentrations of a ligand, a modulator, and an exogenous base. An increase in the local concentration of a deprotonated ligand, which is proportional to the nucleation rate, is associated with smaller crystals, while increased modulator concentration leads to longer microrods. Addition of a deprotonating agent not only contributes to higher aspect ratios but also results in an improvement to particle dispersity. Here, we report acid-base co-modulation methods with difluoroacetic acid and triethylamine to effectively tune PCN-222 aspect ratios. A series of mechanisms is identified for the growth of PCN-222: (1) ligand deprotonation, (2) nucleation, (3) oriented attachment, (4) Ostwald ripening, and (5) dissolution-recrystallization. Time trials of co-modulated samples revealed three separate ripening growth events, with each resulting in larger and more monodisperse crystals. With an understanding of these crystal growth factors and mechanisms, the highest aspect ratio, non-templated metal-organic frameworks were synthesized (94 ± 9).

12.
J Am Chem Soc ; 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33215496

RESUMO

Metal-organic frameworks (MOFs) are emerging as a promising platform for solar energy conversion applications. Their potential utilization as efficient chromophores in artificial photosynthesis is closely related to the understanding of light-harvesting and energy transfer processes that occur within these molecular scaffolds. Herein, we present the photophysical investigation of Ru(II), Ir(III), and Os(II) polypyridyl complexes incorporated into the backbone of UiO-67. In this work, we systematically study the effect of spin-orbit coupling on dipole-dipole energy transfer in MOFs using steady-state and time-resolved spectroscopic techniques. The results of our work indicate successful triplet-to-singlet energy transfer and a sizable increase in the transfer kinetics and critical distance, as direct consequences of strong spin-orbit couplings. Remarkably, the reported R0 value for OsDCBPY (R0 = 88 ± 10 Å) represents one of the largest Förster distances observed in an MOF. Collectively, this work contributes to the general knowledge of energy transfer in materials and provides groundwork for efficient utilization in artificial photosynthetic assemblies.

13.
J Am Chem Soc ; 141(30): 11947-11953, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31271285

RESUMO

The chronoamperometric response (I vs t) of three metallocene-doped metal-organic frameworks (MOFs) thin films (M-NU-1000, M = Fe, Ru, Os) in two different electrolytes (tetrabutylammonium hexafluorophosphate [TBAPF6] and tetrabutylammonium tetrakis(pentafluorophenyl)borate [TBATFAB]) was utilized to elucidate the diffusion coefficients of electrons and ions (De and Di, respectively) through the structure in response to an oxidizing applied bias. The application of a theoretical model for solid state voltammetry to the experimental data revealed that the diffusion of ions is the rate-determining step at the three different time stages of the electrochemical transformation: an initial stage characterized by rapid electron diffusion along the crystal-solution boundary (stage A), a second stage that represents the diffusion of electrons and ions into the bulk of the MOF crystallite (stage B), and a final period of the conversion dominated only by the diffusion of ions (stage C). Remarkably, electron diffusion (De) increased in the order of Fe < Ru < Os using PF61- as the counteranion in all the stages of the voltammogram, demonstrating the strategy to modulate the rate of electron transport through the incorporation of rapidly self-exchanging molecular moieties into the MOF structure. The De values obtained with larger TFAB1- counteranion were generally in agreement with the previous trend but were on average lower than those obtained with PF61-. Similarly, the ion diffusion coefficient (Di) was generally higher for TFAB1- than for PF61- as the ions diffuse into the crystal bulk, due to the high degree of ion-pair association between PF61- and the metallocenium ion, resulting in a faster penetration of the weakly associated TFAB1- anion through the MOF pores. These structure-function relationships provide a foundation for the future design, control, and optimization of electron and ion transport properties in MOF thin films.

14.
Faraday Discuss ; 216(0): 174-190, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31017129

RESUMO

We present the synthesis and photophysical characterization of a water stable PCN-223(freebase) metal organic framework (MOF) constructed from meso-tetrakis(4-carboxyphenyl)porphyrin (TCPP). The photophysical properties of the synthesized crystalline material were studied using a wide range of steady-state and time-resolved spectroscopic techniques. Quenching experiments performed on TCPP and PCN-223 demonstrated that the extent and the rate of quenching in the MOF is significantly higher than the monomeric ligand. Based on these results, we propose that upon photo-excitation, the singlet excitation energy migrates across neutral TCPP linkers until it is quenched by a N-protonated TCPP linker. The N-protonated linkers act as trap states that deactivate the excited state to the ground state. Variable temperature measurements aided in understanding the mechanism of singlet-singlet energy transfer in the PCN-223 MOF. The rate of energy transfer and the total exciton hopping distance in PCN-223 were calculated in order to quantify the energy transfer characteristics of PCN-223. Nanosecond transient absorption spectroscopy was used to study the triplet excited state photophysics in both the free ligand and PCN-223 MOF. Furthermore, femtosecond transient absorption spectroscopy was employed to get a better understanding of the photophysical processes taking place in the ligand and MOF on ultrafast timescales. Efficient energy transfer (Förster radius = 54.5 Å) accompanied with long distance exciton hopping (173 Å) was obtained for the PCN-223 MOF.

15.
Inorg Chem ; 58(8): 5145-5153, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30912437

RESUMO

The reaction of zirconium salts with meso-tetra(4-carboxyphenyl)porphyrin (TCPP) in the presence of different modulators results in the formation of a diverse set of metal-organic frameworks (MOFs), each displaying distinct crystalline topologies. However, the synthesis of phase-pure crystalline frameworks remains challenging due to the concurrent formation of different polymorphs. The acidity and concentration of the modulator greatly influence the outcome of the MOF synthesis. By systematically varying these two parameters, selective framework formation can be achieved. In the present study, we aimed to elucidate the effect of modulator on the synthesis of zirconium-based TCPP MOFs. With the help of powder X-ray diffraction and scanning electron microscopy, modulator candidates and the optimal synthetic conditions yielding phase-pure PCN-222, PCN-223, and MOF-525 were identified. 1H nuclear magnetic resonance analysis, thermogravimetric analysis, and N2 gas sorption measurements were performed on select MOFs to gain insight into the relationship between their defectivity and modulator properties.

16.
Phys Chem Chem Phys ; 21(9): 5078-5085, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30762868

RESUMO

The metal-organic framework (MOF), UiO-66, contains Brønsted acidic and Lewis acidic sites that play an important role in sorption, separation, and potential catalytic processes involving small gaseous molecules. As such, studies into the sequestration and separation of CO within UiO-66 provides a fundamental understanding of small gas molecule adsorption within a highly porous, tunable and environmentally stable MOF. Infrared spectroscopic measurements, in combination with density functional theory, were employed to characterize the binding energetics between bridging hydroxyl groups at MOF nodes and the adsorbate, CO. Two unique binding configurations between CO and the µ3-OH groups were identified based on differing stretching vibrations of COads when interacting through the C- and O-atom of the molecule. Variable temperature infrared spectroscopy (VTIR) was employed to attain energetics of CO adsorption (-17 kJ mol-1) and isomerization from the carbonyl to the isocarbonyl configuration (4 kJ mol-1). Results suggest that CO-hydroxyl interactions, while weak in nature, play a critical role in CO adsorption within the confined pore environment of UiO-66.

17.
J Am Chem Soc ; 140(3): 993-1003, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29268601

RESUMO

Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions and maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO2 uptake capacity (up to ∼9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO2 with epoxides, including sterically hindered epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.

18.
Inorg Chem ; 56(22): 13777-13784, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29120169

RESUMO

Exploring defect sites in metal-organic framework materials has quickly become an interesting topic of discussion in the literature. With reports of the enhancement of material properties with increasing defect sites, we were interested in probing the defect nature of UiO-AZB (UiO = University of Oslo, AZB = 4,4'-azobenzenedicarboxylate) nanoparticles. In this report, we investigate the use of acetic, formic, and benzoic acids as the modulators to prepare UiO-AZB. The results of 1H NMR techniques and BET surface area analysis elucidate the extent of defects in our samples and are provided along with detailed discussions of the observed experimental trends. Interestingly, formic acid samples resulted in the most defected structure, reaching 36%. Additionally, for benzoic acid samples, with a 33% defect level, a drastic reduction in the accessible SA from 2682 m2/g to as low as 903 m2/g was observed, as the concentration of benzoic acid was increased. This was attributed to the creation of macropores in the individual crystallites and confirmed by average pore width analysis.

19.
Inorg Chem ; 56(22): 13741-13747, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29094928

RESUMO

The ditopic ligands 2,6-dicarboxy-9,10-anthraquinone and 1,4-dicarboxy-9,10-anthraquinone were used to synthesize two new UiO-type metal-organic frameworks (MOFs; namely, 2,6-Zr-AQ-MOF and 1,4-Zr-AQ-MOF, respectively). The Pourbaix diagrams (E vs pH) of the MOFs and their ligands were constructed using cyclic voltammetry in aqueous buffered media. The MOFs exhibit chemical stability and undergo diverse electrochemical processes, where the number of electrons and protons transferred was tailored in a Nernstian manner by the pH of the media. Both the 2,6-Zr-AQ-MOF and its ligand reveal a similar electrochemical pKa value (7.56 and 7.35, respectively) for the transition between a two-electron, two-proton transfer (at pH < pKa) and a two-electron, one-proton transfer (at pH > pKa). In contrast, the position of the quinone moiety with respect to the zirconium node, the effect of hydrogen bonding, and the amount of defects in 1,4-Zr-AQ-MOF lead to the transition from a two-electron, three-proton transfer to a two-electron, one-proton transfer. The pKa of this framework (5.18) is analogous to one of the three electrochemical pKa values displayed by its ligand (3.91, 5.46, and 8.80), which also showed intramolecular hydrogen bonding. The ability of the MOFs to tailor discrete numbers of protons and electrons suggests their application as charge carriers in electronic devices.

20.
Anesth Analg ; 125(1): 268-271, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28514326

RESUMO

Case cancellations have a negative financial impact due to revenue loss and the potential costs of underutilized time. The goals of this study at a recently opened hospital in the Middle East were to measure the cancellation rates for elective surgical or endoscopic cases and to identify the reasons for cancellation. During the 1-month study period, 170 (22.4%) of the 760 scheduled cases were cancelled. Cultural norms and patient no-shows on the day of surgery accounted for the majority of case cancellations. Understanding local factors on hospital functions may be vital for organizations expanding into new geographic areas.


Assuntos
Eficiência Organizacional , Procedimentos Cirúrgicos Eletivos/economia , Procedimentos Cirúrgicos Eletivos/estatística & dados numéricos , Centros de Atenção Terciária/organização & administração , Adulto , Idoso , Agendamento de Consultas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oriente Médio , Salas Cirúrgicas , Cooperação do Paciente , Centros de Atenção Terciária/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA