Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Biol Evol ; 37(11): 3118-3130, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219379

RESUMO

Mutation and recombination are the primary sources of genetic variation. To better understand the evolution of genetic variation, it is crucial to comprehensively investigate the processes involving mutation accumulation and recombination. In this study, we performed mutation accumulation experiments on four heterozygous diploid yeast species in the Saccharomycodaceae family to determine spontaneous mutation rates, mutation spectra, and losses of heterozygosity (LOH). We observed substantial variation in mutation rates and mutation spectra. We also observed high LOH rates (1.65-11.07×10-6 events per heterozygous site per cell division). Biases in spontaneous mutation and LOH together with selection ultimately shape the variable genome-wide nucleotide landscape in yeast species.


Assuntos
Genoma Fúngico , Hanseniaspora/genética , Perda de Heterozigosidade , Taxa de Mutação , Acúmulo de Mutações
2.
Antonie Van Leeuwenhoek ; 112(1): 67-74, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30069723

RESUMO

Frankia sp. strain BMG5.30 was isolated from root nodules of a Coriaria myrtifolia seedling on soil collected in Tunisia and represents the second cluster 2 isolate. Frankia sp. strain BMG5.30 was able to re-infect C. myrtifolia generating root nodules. Here, we report its 5.8-Mbp draft genome sequence with a G + C content of 70.03% and 4509 candidate protein-encoding genes.


Assuntos
Frankia/genética , Genoma Bacteriano , Nódulos Radiculares de Plantas/microbiologia , Composição de Bases , Sequência de Bases , Frankia/classificação , Frankia/isolamento & purificação , Frankia/fisiologia , Magnoliopsida/microbiologia , Dados de Sequência Molecular , Filogenia , Simbiose , Tunísia
3.
BMC Genomics ; 19(1): 199, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29703133

RESUMO

BACKGROUND: Ribosomal RNA (rRNA) comprises at least 90% of total RNA extracted from mammalian tissue or cell line samples. Informative transcriptional profiling using massively parallel sequencing technologies requires either enrichment of mature poly-adenylated transcripts or targeted depletion of the rRNA fraction. The latter method is of particular interest because it is compatible with degraded samples such as those extracted from FFPE and also captures transcripts that are not poly-adenylated such as some non-coding RNAs. Here we provide a cross-site study that evaluates the performance of ribosomal RNA removal kits from Illumina, Takara/Clontech, Kapa Biosystems, Lexogen, New England Biolabs and Qiagen on intact and degraded RNA samples. RESULTS: We find that all of the kits are capable of performing significant ribosomal depletion, though there are differences in their ease of use. All kits were able to remove ribosomal RNA to below 20% with intact RNA and identify ~ 14,000 protein coding genes from the Universal Human Reference RNA sample at >1FPKM. Analysis of differentially detected genes between kits suggests that transcript length may be a key factor in library production efficiency. CONCLUSIONS: These results provide a roadmap for labs on the strengths of each of these methods and how best to utilize them.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico/isolamento & purificação , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Humanos , Poli A/genética , RNA Ribossômico/genética
4.
Nat Genet ; 37(5): 544-8, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15852004

RESUMO

The evolutionary importance of gene-expression divergence is unclear: some studies suggest that it is an important mechanism for evolution by natural selection, whereas others claim that most between-species regulatory changes are neutral or nearly neutral. We examined global transcriptional divergence patterns in a set of Caenorhabditis elegans mutation-accumulation lines and natural isolate lines to provide insights into the evolutionary importance of transcriptional variation and to discriminate between the forces of mutation and natural selection in shaping the evolution of gene expression. We detected the effects of selection on transcriptional divergence patterns and characterized them with respect to coexpressed gene sets, chromosomal clustering of expression changes and functional gene categories. We directly compared observed transcriptional variation patterns in the mutation-accumulation and natural isolate lines to a neutral model of transcriptome evolution to show that strong stabilizing selection dominates the evolution of transcriptional change for thousands of C. elegans expressed sequences.


Assuntos
Caenorhabditis elegans/genética , Mutação , Seleção Genética , Transcrição Gênica , Animais , Caenorhabditis elegans/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos
5.
BMC Genomics ; 14: 923, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24373391

RESUMO

BACKGROUND: The genetics of development in the nematode Caenorhabditis elegans has been described in exquisite detail. The phylum Nematoda has two classes: Chromadorea (which includes C. elegans) and the Enoplea. While the development of many chromadorean species resembles closely that of C. elegans, enoplean nematodes show markedly different patterns of early cell division and cell fate assignment. Embryogenesis of the enoplean Romanomermis culicivorax has been studied in detail, but the genetic circuitry underpinning development in this species has not been explored. RESULTS: We generated a draft genome for R. culicivorax and compared its gene content with that of C. elegans, a second enoplean, the vertebrate parasite Trichinella spiralis, and a representative arthropod, Tribolium castaneum. This comparison revealed that R. culicivorax has retained components of the conserved ecdysozoan developmental gene toolkit lost in C. elegans. T. spiralis has independently lost even more of this toolkit than has C. elegans. However, the C. elegans toolkit is not simply depauperate, as many novel genes essential for embryogenesis in C. elegans are not found in, or have only extremely divergent homologues in R. culicivorax and T. spiralis. Our data imply fundamental differences in the genetic programmes not only for early cell specification but also others such as vulva formation and sex determination. CONCLUSIONS: Despite the apparent morphological conservatism, major differences in the molecular logic of development have evolved within the phylum Nematoda. R. culicivorax serves as a tractable system to contrast C. elegans and understand how divergent genomic and thus regulatory backgrounds nevertheless generate a conserved phenotype. The R. culicivorax draft genome will promote use of this species as a research model.


Assuntos
Evolução Biológica , Enoplídios/genética , Genoma Helmíntico , Animais , Caenorhabditis elegans/genética , Enoplídios/crescimento & desenvolvimento , Biblioteca Gênica , Transcriptoma , Tribolium/genética , Trichinella spiralis/genética
6.
Proc Natl Acad Sci U S A ; 105(27): 9272-7, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18583475

RESUMO

The mutation process ultimately defines the genetic features of all populations and, hence, has a bearing on a wide range of issues involving evolutionary genetics, inheritance, and genetic disorders, including the predisposition to cancer. Nevertheless, formidable technical barriers have constrained our understanding of the rate at which mutations arise and the molecular spectrum of their effects. Here, we report on the use of complete-genome sequencing in the characterization of spontaneously arising mutations in the yeast Saccharomyces cerevisiae. Our results confirm some findings previously obtained by indirect methods but also yield numerous unexpected findings, in particular a very high rate of point mutation and skewed distribution of base-substitution types in the mitochondrion, a very high rate of segmental duplication and deletion in the nuclear genome, and substantial deviations in the mutational profile among various model organisms.


Assuntos
Genoma Fúngico/genética , Mutação/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Divisão Celular , Cromossomos Fúngicos/genética , DNA Mitocondrial/genética , Repetições de Microssatélites/genética , Nucleotídeos , Ploidias , Saccharomyces cerevisiae/citologia
7.
J Exp Biol ; 213(Pt 18): 3223-9, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20802125

RESUMO

Caenorhabditis elegans is a premier model organism upon which considerable knowledge of basic cell and developmental biology has been built. Yet, as is true for many traditional model systems, we have limited knowledge of the ecological context in which these systems evolved, severely limiting our understanding of gene function. A better grasp of the ecology of model systems would help us immensely in understanding the functionality of genes and evolution of genomes in an environmental context. Consequently, there are ongoing efforts to uncover natural populations of this model system globally. Here, we describe the discovery of a Caenorhabditis briggsae strain and its bacterial associate (Serratia sp.) that form an entomopathogenic complex in the wild. Laboratory experiments confirm that this nematode and its natural bacterial associate can penetrate, kill and reproduce in an insect host and that the bacterial associate can induce this insect pathogenic life cycle in other Caenorhabditis species, including C. elegans. Our findings suggest that this life history may be widespread in nature and critical to the understanding of the biology of this important model organism. Caenorhabditis-insect interaction could be a key factor in our quest for a better grasp of gene functionality in this important model species. The discovered association, consequently, would provide an ecological framework for functional genomics of Caenorhabditis.


Assuntos
Caenorhabditis/genética , Caenorhabditis/microbiologia , Caenorhabditis/patogenicidade , Ecologia , Insetos/parasitologia , Serratia/patogenicidade , Animais , Caenorhabditis/classificação , Filogenia
8.
Nature ; 430(7000): 679-82, 2004 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15295601

RESUMO

Mutations have pivotal functions in the onset of genetic diseases and are the fundamental substrate for evolution. However, present estimates of the spontaneous mutation rate and spectrum are derived from indirect and biased measurements. For instance, mutation rate estimates for Caenorhabditis elegans are extrapolated from observations on a few genetic loci with visible phenotypes and vary over an order of magnitude. Alternative approaches in mammals, relying on phylogenetic comparisons of pseudogene loci and fourfold degenerate codon positions, suffer from uncertainties in the actual number of generations separating the compared species and the inability to exclude biases associated with natural selection. Here we provide a direct and unbiased estimate of the nuclear mutation rate and its molecular spectrum with a set of C. elegans mutation-accumulation lines that reveal a mutation rate about tenfold higher than previous indirect estimates and an excess of insertions over deletions. Because deletions dominate patterns of C. elegans pseudogene variation, our observations indicate that natural selection might be significant in promoting small genome size, and challenge the prevalent assumption that pseudogene divergence accurately reflects the spontaneous mutation spectrum.


Assuntos
Caenorhabditis elegans/genética , Núcleo Celular/genética , Genoma , Mutagênese Insercional/genética , Mutação/genética , Animais , Sequência de Bases , Análise Mutacional de DNA , Genômica , Cinética , Filogenia , Pseudogenes/genética , Deleção de Sequência/genética
9.
Microbiol Resour Announc ; 9(37)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912917

RESUMO

Frankia sp. strain BMG5.11, which was isolated from Elaeagnus angustifolia nodules, is able to infect other actinorhizal plants, including Elaeagnaceae, Rhamnaceae, Colletieae, Gymnostoma, and Myricaceae Here, we report the 11.3-Mbp draft genome sequence of Frankia sp. strain BMG5.11, with a G+C content of 69.9% and 9,926 candidate protein-encoding genes.

10.
J Genomics ; 8: 84-88, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029225

RESUMO

Frankia sp. strains CgS1, CcI156 and CgMI4 were isolated from Casuarina glauca and C. cunninghamiana nodules. Here, we report the 5.26-, 5.33- and 5.20-Mbp draft genome sequences of Frankia sp. strains CgS1, CcI156 and CgMI4, respectively. Analysis of the genome revealed the presence of high numbers of secondary metabolic biosynthetic gene clusters.

11.
J Genomics ; 8: 11-15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32064004

RESUMO

Frankia sp. strain B2 was isolated from Casuarina cunninghamiana nodules. Here, we report the 5.3-Mbp draft genome sequence of Frankia sp. strain B2 with a G+C content of 70.1 % and 4,663 candidate protein-encoding genes. Analysis of the genome revealed the presence of high numbers of secondary metabolic biosynthetic gene clusters.

12.
Mol Biol Evol ; 25(7): 1429-39, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18403399

RESUMO

In insects, the homologue of the Down syndrome cell adhesion molecule (Dscam) is a unique case of a single-locus gene whose expression has extensive somatic diversification in both the nervous and immune systems. How this situation evolved is best understood through comparative studies. We describe structural, expression, and evolutionary aspects of a Dscam homolog in 2 species of the crustacean Daphnia. The Dscam of Daphnia generates up to 13,000 different transcripts by the alternative splicing of variable exons. This extends the taxonomic range of a highly diversified Dscam beyond the insects. Additionally, we have identified 4 alternative forms of the cytoplasmic tail that generate isoforms with or without inhibitory or activating immunoreceptor tyrosine-based motifs (ITIM and ITAM respectively), something not previously reported in insect's Dscam. In Daphnia, we detected exon usage variability in both the brain and hemocytes (the effector cells of immunity), suggesting that Dscam plays a role in the nervous and immune systems of crustaceans, as it does in insects. Phylogenetic analysis shows a high degree of amino acid conservation between Daphnia and insects except in the alternative exons, which diverge greatly between these taxa. Our analysis shows that the variable exons diverged before the split of the 2 Daphnia species and is in agreement with the nearest-neighbor model for the evolution of the alternative exons. The genealogy of the Dscam gene family from vertebrates and invertebrates confirmed that the highly diversified form of the gene evolved from a nondiversified form before the split of insects and crustaceans.


Assuntos
Processamento Alternativo , Daphnia/genética , Insetos/genética , Proteínas de Membrana/genética , Sequência de Aminoácidos , Animais , Química Encefálica , Moléculas de Adesão Celular , Sequência Conservada/genética , Daphnia/anatomia & histologia , Daphnia/fisiologia , Evolução Molecular , Éxons , Hemócitos/química , Humanos , Proteínas de Insetos/genética , Insetos/anatomia & histologia , Insetos/fisiologia , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas/genética , Alinhamento de Sequência
13.
J Genomics ; 5: 64-67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28698736

RESUMO

Frankia sp. strain KB5 was isolated from Casuarina equisetifolia and previous studies have shown both nitrogenase and uptake hydrogenase activities under free-living conditions. Here, we report 5.5-Mbp draft genome sequence with a G+C content of 70.03 %, 4,958 candidate protein-encoding genes, and 2 rRNA operons.

14.
Genome Announc ; 5(37)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912324

RESUMO

Photorhabdus temperata strain Hm is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. Here, we report a 5.0-Mbp draft genome sequence for P. temperata strain Hm with a G+C content of 44.1% and containing 4,226 candidate protein-encoding genes.

15.
J Genomics ; 5: 119-123, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28943973

RESUMO

Frankia sp. strain CcI49 was isolated from Casuarina cunninghamiana nodules. However the strain was unable to re-infect Casuarina, but was able to infect other actinorhizal plants including Elaeagnaceae. Here, we report the 9.8-Mbp draft genome sequence of Frankia sp. strain CcI49 with a G+C content of 70.5 % and 7,441 candidate protein-encoding genes. Analysis of the genome revealed the presence of a bph operon involved in the degradation of biphenyls and polychlorinated biphenyls.

16.
Genome Announc ; 5(24)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619804

RESUMO

Frankia sp. strain Cc1.17 is a member of the Frankia lineage 3, the organisms of which are able to reinfect plants of the Eleagnaceae, Rhamnaceae, and Myricaceae families and the genera Gynmnostoma and Alnus Here, we report the 8.4-Mbp draft genome sequence, with a G+C content of 72.14% and 6,721 candidate protein-coding genes.

17.
Genome Announc ; 5(15)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408685

RESUMO

Here, we present draft genome sequences for three atypical Frankia strains (lineage 4) that were isolated from root nodules but are unable to reinfect actinorhizal plants. The genome sizes of Frankia sp. strains EUN1h, BMG5.36, and NRRL B16386 were 9.91, 11.20, and 9.43 Mbp, respectively.

18.
Genome Announc ; 5(15)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408686

RESUMO

The genus Rhizobium contains many species able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 6.9-Mbp draft genome sequence of Rhizobium sp. strain RSm-3, with a G+C content of 61.4% and 6,511 candidate protein-coding genes.

19.
Genome Announc ; 5(41)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025952

RESUMO

The genus Mesorhizobium contains many species that are able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the draft genome sequences for three Mesorhizobium strains. The genome sizes of strains LCM 4576, LCM 4577, and ORS3428 were 7.24, 7.02, and 6.55 Mbp, respectively.

20.
Genome Announc ; 5(18)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473386

RESUMO

The genus Rhizobium contains many species that are able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 5.5-Mb draft genome sequence of the salt-tolerant Rhizobium sp. strain LCM 4573, which has a G+C content of 61.2% and 5,356 candidate protein-encoding genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA