Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 753, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107711

RESUMO

BACKGROUND: When subject to stress conditions such as nutrient limitation microalgae accumulate triacylglycerol (TAG). Fatty acid, a substrate for TAG synthesis is derived from de novo synthesis or by membrane remodeling. The model industrial alga Chlorellasorokiniana accumulates TAG and other storage compounds under nitrogen (N)-limited growth. Molecular mechanisms underlying these processes are still to be elucidated. RESULT: Previously we used transcriptomics to explore the regulation of TAG synthesis in C. sorokiniana. Surprisingly, our analysis showed that the expression of several key genes encoding enzymes involved in plastidic fatty acid synthesis are significantly repressed. Metabolic labeling with radiolabeled acetate showed that de novo fatty acid synthesis is indeed downregulated under N-limitation. Likewise, inhibition of the Target of Rapamycin kinase (TOR), a key regulator of metabolism and growth, decreased fatty acid synthesis. We compared the changes in proteins and phosphoprotein abundance using a proteomics and phosphoproteomics approach in C. sorokiniana cells under N-limitation or TOR inhibition and found extensive overlap between the N-limited and TOR-inhibited conditions. We also identified changes in the phosphorylation status of TOR complex proteins, TOR-kinase, and RAPTOR, under N-limitation. This indicates that TOR signaling is altered in a nitrogen-dependent manner. We find that TOR-mediated metabolic remodeling of fatty acid synthesis under N-limitation is conserved in the chlorophyte algae Chlorella sorokiniana and Chlamydomonas reinhardtii. CONCLUSION: Our results indicate that under N-limitation there is significant metabolic remodeling, including fatty acid synthesis, mediated by TOR signaling. This process is conserved across chlorophyte algae. Using proteomic and phosphoproteomic analysis, we show that N-limitation affects TOR signaling and this in-turn affects the metabolic status of the cells. This study presents a link between N-limitation, TOR signaling and fatty acid synthesis in green-lineage.


Assuntos
Chlamydomonas reinhardtii , Chlorella , Regulação para Baixo , Ácidos Graxos , Nitrogênio , Chlorella/metabolismo , Chlorella/genética , Nitrogênio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Proteômica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese
2.
Front Plant Sci ; 15: 1418049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040507

RESUMO

Many microbes accumulate energy storage molecules such as triglycerides (TAG) and starch during nutrient limitation. In eukaryotic green algae grown under nitrogen-limiting conditions, triglyceride accumulation is coupled with chlorosis and growth arrest. In this study, we show that reactive oxygen species (ROS) actively accumulate during nitrogen limitation in the microalga Chlorella sorokiniana. Accumulation of ROS is mediated by the downregulation of genes encoding ROS-quenching enzymes, such as superoxide dismutases, catalase, peroxiredoxin, and glutathione peroxidase-like, and by the upregulation of enzymes involved in generating ROS, such as NADPH oxidase, xanthine oxidase, and amine oxidases. The expression of genes involved in ascorbate and glutathione metabolism is also affected under this condition. ROS accumulation contributes to the degradation of monogalactosyl diacylglycerol (MGDG) and thylakoid membrane remodeling, leading to chlorosis. Quenching ROS under nitrogen limitation reduces the degradation of MGDG and the accumulation of TAG. This work shows that ROS accumulation, membrane remodeling, and TAG accumulation under nitrogen limitation are intricately linked in the microalga C. sorokiniana.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA