RESUMO
OBJECTIVES: Two-dimensional (2D) through-plane phase-contrast (PC) cine flow imaging assesses shunts and valve regurgitations in paediatric CMR and is considered the reference standard for Clinical quantification of blood Flow (COF). However, longer breath-holds (BH) can reduce compliance with possibly large respiratory manoeuvres altering flow. We hypothesize that reduced BH time by application of CS (Short BH quantification of Flow) (SBOF) retains accuracy while enabling faster, potentially more reliable flows. We investigate the variance between COF and SBOF cine flows. METHODS: Main pulmonary artery (MPA) and sinotubular junction (STJ) planes were acquired at 1.5 T in paediatric patients by COF and SBOF. RESULTS: 21 patients (mean age 13.9, 10-17y) were enrolled. The BH times were COF mean 11.7 s (range 8.4-20.9 s) vs SBOF mean 6.5 s (min 3.6-9.1 s). The differences and 95% CI between the COF and SBOF flows were LVSV -1.43 ± 13.6(ml/beat), LVCO 0.16 ± 1.35(l/min) and RVSV 2.95 ± 12.3(ml/beat), RVCO 0.27 ± 0.96(l/min), QP/QS were SV 0.04 ± 0.19, CO 0.02 ± 0.23. Variability between COF and SBOF did not exceed intrasession variation of COF. CONCLUSION: SBOF reduces breath-hold duration to 56% of COF. RV flow by SBOF was biased compared to COF. The variation (95% CI) between COF and SBOF was similar to the COF intrasession test-retest 95% CI.
Assuntos
Imagem Cinética por Ressonância Magnética , Imageamento por Ressonância Magnética , Humanos , Criança , Imagem Cinética por Ressonância Magnética/métodos , Pulmão , Suspensão da Respiração , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos TestesRESUMO
Following current practice, pediatric patients with treated congenital coronary malformations or acquired coronary disease undergo Cardio-Pulmonary Exercise Test (CPET), stress Echocardiography and Electrocardiography (sEcho, sEKG), and Coronary Angiography (CA). Stress cMRI can assess cardiac function, myocardial viability, and stress/rest perfusion deficit-without radiation exposure, general anesthesia, and hospitalization-in a single non-invasive exam. The aim of our pilot study is to assess the feasibility and diagnostic accuracy of Dobutamine stress cMRI compared to the current procedures (sEcho, CPET, CA). The prospective study is focused on pediatric patients, at risk for or with previously diagnosed coronary artery disease: d-looped TGA after arterial Switch, Kawasaki disease, and anomalous origin of left coronary artery from pulmonary artery (ALCAPA) after coronary artery reimplantation. We have compared the results of MRI coronary angiography, and Dobutamine stress cMRI with traditional tests. All these diagnostic exams were acquired in a timeframe of 3 month, in a blinded fashion. All the 13 patients (age: 12 ± 2 years, median 12,7 y) recruited, completed the study without major adverse events. The mean heart rate-pressure product was 25,120 ± 5110 bpm x mm Hg. The target heart rate of 85% of the maximal theoretical was reached by 10 (77%) patients. The comparison between cardiac MRI coronarography versus the gold standard Coronary Angiography to identify the patency of the origin and the proximal pathway of the coronary arteries shows a sensitivity of 100% (confidence interval: 2,5-100%), specificity 92% (confidence interval: 64-100%). The stress test was well tolerated for the 77% of the patients and completed by the totality of patients (Table 3). Three patients (23%) had mild symptoms: nausea, vomiting, or general discomfort. In pediatric patients with a potential or definite diagnosis of coronary artery disease, stress cMRI combines an effective assessment of proximal coronary arteries anatomy with cardiac function, myocardial perfusion, and viability in a single examination. Stress cMRI can be proposed as alternative, standalone test.
Assuntos
Síndrome de Bland-White-Garland , Doença da Artéria Coronariana , Humanos , Criança , Adolescente , Doença da Artéria Coronariana/diagnóstico por imagem , Dobutamina , Estudos Prospectivos , Projetos Piloto , Teste de Esforço , Angiografia Coronária , Imageamento por Ressonância Magnética/métodosRESUMO
BACKGROUND: Multi-system inflammatory syndrome in children and Kawasaki disease have overlapping clinical features but comparative echocardiographic studies are lacking. METHODS: We reviewed echocardiography findings of all multi-system inflammatory syndrome cases between 1st April and 31st July, 2020 and typical Kawasaki disease patients with coronary arteries abnormalities consecutively followed between 1st October, 2016 and June 30th, 2019. RESULTS: We included 40 multi-system inflammatory syndrome children (25 males, 62.5%) and 45 Kawasaki disease patients (31 males, 68.9%) at a mean age of 6.4 years old and 8 years old, respectively. Four out of 40 multi-system inflammatory syndrome children had coronary arteries abnormalities. Left ventricle ejection fraction was normal in both groups. Global longitudinal strain was normal although Kawasaki disease group had significantly lower values (-20.0 versus -21.7%; p = 0.02). Basal segments were the most affected in Kawasaki disease patients with significant differences in the basal anterior, anterolateral, and anteroseptal strain: -18.2 versus -23.0% (p = 0.002), -16.7 versus -22.0% (p < 0.001), -16.7 versus -19.5% (p = 0.034), respectively. The basal anterolateral and anteroseptal segments in Kawasaki disease patients were the only ones with an absolute reduction of longitudinal strain (-16.7% both) consistent with the greater left main coronary involvement in this cohort. CONCLUSIONS: Our findings are consistent with the transient cardiac involvement in multi-system inflammatory syndrome, as opposed to the subtle and chronic myocardial involvement in Kawasaki disease children with coronary arteries abnormalities. We speculate that the mechanism of cardiac impairment in the few multi-system inflammatory syndrome children with reduced global longitudinal strain is not related to coronary arteries abnormalities.
Assuntos
Doença da Artéria Coronariana , Síndrome de Linfonodos Mucocutâneos , Masculino , Humanos , Criança , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/epidemiologia , Deformação Longitudinal Global , Coração , EcocardiografiaRESUMO
Background: Aortic coarctation (CoA) is a congenital heart disease affecting 5-8% of patients, with long-term complications persisting despite successful correction. Stress echocardiography (SE) is increasingly used for evaluating cardiac function under stress, yet its role in repaired CoA remains under-explored. Objective: This study aimed to assess the predictive value of SE and myocardial strain in repaired CoA patients with a history of hypertension without significant gradients or with borderline gradients at rest. Methods: Between June 2020 and March 2024, we enrolled 35 consecutive CoA patients with successful repairs and either a history of hypertension or borderline Doppler gradients. Baseline and peak exercise echocardiographic measurements, including left ventricular mass index (LVMi) and global longitudinal strain (LVGLS), were recorded. Patients were followed for up to 4 years. Results: At baseline, the positive SE group had higher systolic blood pressure (SBP) and diastolic blood pressure (DBP) compared to the negative SE group. The positive SE group also exhibited significantly higher basal and peak trans-isthmic gradients. Positive SE was found in 45.7% of patients, with 68.7% of these requiring re-intervention during follow-up. A peak trans-isthmic gradient > 61 mmHg during exercise predicted recoarctation with 100% sensitivity and 71% specificity (AUC = 0.836, p < 0.004). Conclusions: SE identifies at-risk patients post-CoA repair, aiding in early intervention. A peak trans-isthmic gradient > 61 mmHg during exercise is a strong predictor of recoarctation. These findings support incorporating SE into routine follow-up protocols for CoA patients, particularly those with a history of hypertension and borderline gradients, to improve long-term outcomes and quality of life.
RESUMO
Congenital heart diseases (CHDs) represent a heterogeneous group of congenital defects, with high prevalence worldwide. Non-invasive imaging is essential to guide medical and surgical planning, to follow the patient over time in the evolution of the disease, and to reveal potential complications of the chosen treatment. The application of cardiac magnetic resonance imaging (CMRI) in this population allows for obtaining detailed information on the defects without the necessity of ionizing radiations. This review emphasizes the central role of CMR in the overall assessment of CHDs, considering also the limitations and challenges of this imaging technique. CMR, with the application of two-dimensional (2D) and tri-dimensional (3D) steady-state free precession (SSFP), permits the obtaining of very detailed and accurate images about the cardiac anatomy, global function, and volumes' chambers, giving essential information in the intervention planning and optimal awareness of the postoperative anatomy. Nevertheless, CMR supplies tissue characterization, identifying the presence of fat, fibrosis, or oedema in the myocardial tissue. Using a contrast agent for angiography sequences or 2D/four-dimensional (4D) flows offers information about the vascular, valvular blood flow, and, in general, the cardiovascular system hemodynamics. Furthermore, 3D SSFP CMR acquisitions allow the identification of coronary artery abnormalities as an alternative to invasive angiography and cardiovascular computed tomography (CCT). However, CMR requires expertise in CHDs, and it can be contraindicated in patients with non-conditional devices. Furthermore, its relatively longer acquisition time and the necessity of breath-holding may limit its use, particularly in children under eight years old, sometimes requiring anesthesia. The purpose of this review is to elucidate the application of CMR during the pediatric age.
RESUMO
A heart with a borderline ventricle refers to a situation where there is uncertainty about whether the left or right underdeveloped ventricle can effectively support the systemic or pulmonary circulation with appropriate filling pressures and sufficient physiological reserve. Pediatric cardiologists often deal with congenital heart diseases (CHDs) associated with various degrees of hypoplasia of the left or right ventricles. To date, no specific guidelines exist, and surgical management may be extremely variable in different centers and sometimes even in the same center at different times. Thus, the choice between the single-ventricle or biventricular approach is always controversial. The aim of this review is to better define when "small is too small and large is large enough" in order to help clinicians make the decision that could potentially affect the patient's entire life.
RESUMO
The complete transposition of the great arteries (C-TGA) is a congenital cardiac anomaly characterized by the reversal of the main arteries. Early detection and precise management are crucial for optimal outcomes. This review emphasizes the integral role of multimodal imaging, including fetal echocardiography, transthoracic echocardiography (TTE), cardiovascular magnetic resonance (CMR), and cardiac computed tomography (CCT) in the diagnosis, treatment planning, and long-term follow-up of C-TGA. Fetal echocardiography plays a pivotal role in prenatal detection, enabling early intervention strategies. Despite technological advances, the detection rate varies, highlighting the need for improved screening protocols. TTE remains the cornerstone for initial diagnosis, surgical preparation, and postoperative evaluation, providing essential information on cardiac anatomy, ventricular function, and the presence of associated defects. CMR and CCT offer additional value in C-TGA assessment. CMR, free from ionizing radiation, provides detailed anatomical and functional insights from fetal life into adulthood, becoming increasingly important in evaluating complex cardiac structures and post-surgical outcomes. CCT, with its high-resolution imaging, is indispensable in delineating coronary anatomy and vascular structures, particularly when CMR is contraindicated or inconclusive. This review advocates for a comprehensive imaging approach, integrating TTE, CMR, and CCT to enhance diagnostic accuracy, guide therapeutic interventions, and monitor postoperative conditions in C-TGA patients. Such a multimodal strategy is vital for advancing patient care and improving long-term prognoses in this complex congenital heart disease.
RESUMO
Heart failure (HF) is a clinical syndrome which is due to cardiac structural and/or functional abnormalities that result in elevated intra-cardiac pressures and/or inadequate cardiac output. Hemodynamic assessment in HF allows the identification and characterization of cardiac dysfunction, systemic and/or pulmonary congestion and the eventual impairment of systemic perfusion which are fundamental to phenotype HF, risk stratify HF patients and to guide their treatment. Patient hemodynamics can be characterized invasively with right heart catheterization but also non-invasively with the use of echocardiography and other non-invasive ultrasound tools. The aim of the present review is to summarize the main echocardiographic and ultrasound parameters to characterize the hemodynamics of patients with HF and help clinicians to make the most of these non-invasive tools to guide HF patient management.
RESUMO
In 2023, cardiovascular imaging has made significant advancements, in terms of technology, pathophysiology, and clinical application. In this review, the most recent research findings in the field of cardiovascular imaging are discussed. Artificial intelligence and large population cohorts, together with several technical improvements, have had a crucial impact on the technological advancements of echocardiography, cardiovascular magnetic resonance, computed tomography (CT), and nuclear medicine. In the field of ischaemic heart disease, it has been demonstrated that appropriate non-invasive imaging strategies improve patients' management and reduce invasive procedures and the need for additional testing at follow-up. Moreover, improvements in plaque characterization with CT are an expanding field of research with relevant implications for the prediction of disease severity, evolution, and response to treatment. In the field of valvular heart disease, imaging techniques have advanced alongside improvements in transcatheter treatment for aortic stenosis, mitral, and tricuspid regurgitation. Finally, in the field of heart failure and cardiomyopathies, cardiovascular imaging has reinforced its crucial role in early diagnosis and risk evaluation, showcasing advanced techniques that outperform traditional methods in predicting adverse outcomes.
RESUMO
Despite many advances in surgical repair during the past few decades, the majority of tetralogy of Fallot patients continue to experience residual hemodynamic and electrophysiological abnormalities. The actual issue, which has yet to be solved, is understanding how this disease evolves in each individual patient and, as a result, who is truly at risk of sudden death, as well as the proper timing of pulmonary valve replacement (PVR). Our responsibility should be to select the most appropriate time for each patient, going above and beyond imaging criteria used up to now to make such a clinically crucial decision. Despite several studies on timing, indications, procedures, and outcomes of PVR, there is still much uncertainty about whether PVR reduces arrhythmia burden or improves survival in these patients and how to appropriately manage this population. This review summarizes the most recent research on the evolution of repaired tetralogy of Fallot (from adolescence onwards) and risk factor variables that may favor or delay PVR.
RESUMO
Advances in pediatric cardiac surgery have resulted in a recent growing epidemic of children and young adults with congenital heart diseases (CHDs). In these patients, congenital defects themselves, surgical operations and remaining lesions may alter cardiac anatomy and impact the mechanical performance of both ventricles. Cardiac function significantly influences outcomes in CHDs, necessitating regular patient follow-up to detect clinical changes and relevant risk factors. Echocardiography remains the primary imaging method for CHDs, but clinicians must understand patients' unique anatomies as different CHDs exhibit distinct anatomical characteristics affecting cardiac mechanics. Additionally, the use of myocardial deformation imaging and 3D echocardiography has gained popularity for enhanced assessment of cardiac function and anatomy. This paper discusses the role of echocardiography in evaluating cardiac mechanics in most significant CHDs, particularly its ability to accommodate and interpret the inherent anatomical substrate in these conditions.
RESUMO
Although not frequent in the pediatric population, ischemia could occur in children due to several congenital and acquired disease. Stress imaging is key for the non-invasive evaluation of myocardial abnormalities and perfusion defect in this clinical setting. Moreover, beyond ischemia assessment, it can provide complementary diagnostic and prognostic information in valvular heart disease and cardiomyopathies. When performed using cardiovascular magnetic resonance, it could detect, in addition, myocardial fibrosis and infarction, increasing the diagnostic yield. Several imaging modalities are currently available for the evaluation of stress myocardial perfusion. Advances in technologies have also increased the feasibility, safety and availability of these modalities in the pediatric age group. However, despite the established role of stress imaging and its increasing use in daily clinical practice, there are currently no specific guidelines, and little data are available in the literature on this topic. The aim of this review is to summarize the most recent evidence on pediatric stress imaging and its clinical application with a focus on the advantages and limitations of each imaging modality currently available.
RESUMO
The study analyzes red deer responses to disturbances during the day and different exposures to tourists, to establish the more appropriate times to carry out activities inside the Paneveggio deer enclosure. The alarm reactions of red deer were observed after presenting different types of visual stimuli inside and outside the fence, in order to answer some questions: Which stimuli produce the strongest reactions from the animals? Do animals differently react to stimuli presented outside and inside the fence? On which days and times are the animals more sensitive to disturbances? Are there different reactions between the males and females? The results suggest that the red deer adversely react to the disturbance at different degrees of intensity in relation to day, sex, tourist and where the stimuli are presented. It was observed that during the days with the highest tourist presence, the animals were particularly alarmed; discomfort accumulation produced the highest number of alarm reactions on Monday. For these reasons, it would be opportune to manage the pasture on Tuesday, Wednesday and Thursday, scheduled at specific times of day, preferably far from the estimated presence of tourists.
RESUMO
Cardiovascular magnetic resonance (CMR) imaging offers a comprehensive, non-invasive, and radiation-free imaging modality, which provides a highly accurate and reproducible assessment of cardiac morphology and functions across a wide spectrum of cardiac conditions spanning from fetal to adult life. It minimises risks to the patient, particularly the risks associated with exposure to ionising radiation and the risk of complications from more invasive haemodynamic assessments. CMR utilises high spatial resolution and provides a detailed assessment of intracardiac and extracardiac anatomy, ventricular and valvular function, and flow haemodynamic and tissue characterisation, which aid in the diagnosis, and, hence, with the management of patients with cardiac disease. This article aims to discuss the role of CMR and the indications for its use throughout the different stages of life, from fetal to adult life.
RESUMO
Coarctation of the aorta (CoA) is a congenital abnormality characterized by a narrowing of the aortic lumen, which can lead to significant morbidity and mortality if left untreated. Even after repair and despite significant advances in therapeutic management, these patients have overall reduced long-term survival due to the consequences of chronic afterload increase. Cardiovascular imaging is key from the first diagnosis to serial follow-up. In recent years, novel imaging techniques have emerged, increasing accessibility to advanced imaging modalities and enabling early and non-invasive identification of complications after repair. The aim of this paper is to provide a comprehensive review of the role of different imaging techniques in the evaluation and management of patients with native or repaired CoA, highlighting their unique strengths and limitations.
RESUMO
Congenital heart disease (CHD) affects approximately one in every one hundred infants worldwide, making it one of the most prevalent birth abnormalities globally. Despite advances in medical technology and treatment choices, CHD remains a significant health issue and necessitates specialized care throughout an individual's life. Childhood obesity has emerged as a novel global epidemic, becoming a major public health issue, particularly in individuals with lifelong conditions such as CHD. Obesity has profound effects on cardiac hemodynamics and morphology, emphasizing the importance of addressing obesity as a significant risk factor for cardiovascular health. Obesity-induced alterations in cardiac function can have significant implications for cardiovascular health and may contribute to the increased risk of heart-related complications in obese individuals. Moreover, while diastolic dysfunction may be less apparent in obese children compared to adults, certain parameters do indicate changes in early left ventricular relaxation, suggesting that obesity can cause cardiac dysfunction even in pediatric populations. As most children with CHD now survive into adulthood, there is also concern about environmental and behavioral health risk factors in this particular patient group. Addressing obesity in individuals with CHD is essential to optimize their cardiovascular health and overall quality of life. This review aims to succinctly present the data on the impact of obesity on CHD and to enhance awareness of this perilous association among patients, families, and healthcare providers.
RESUMO
Cardiomyopathies are a heterogeneous group of myocardial diseases representing the first cause of heart transplantation in children. Diagnosing and classifying the different phenotypes can be challenging, particularly in this age group, where cardiomyopathies are often overlooked until the onset of severe symptoms. Cardiovascular imaging is crucial in the diagnostic pathway, from screening to classification and follow-up assessment. Several imaging modalities have been proven to be helpful in this field, with echocardiography undoubtedly representing the first imaging approach due to its low cost, lack of radiation, and wide availability. However, particularly in this clinical context, echocardiography may not be able to differentiate from cardiomyopathies with similar phenotypes and is often complemented with cardiovascular magnetic resonance. The latter allows a radiation-free differentiation between different phenotypes with unique myocardial tissue characterization, thus identifying the presence and extent of myocardial fibrosis. Nuclear imaging and computed tomography have a complementary role, although they are less used in daily clinical practice due to the concern related to the use of radiation in pediatric patients. However, these modalities may have some advantages in evaluating children with cardiomyopathies. This paper aims to review the strengths and limitations of each imaging modality in evaluating pediatric patients with suspected or known cardiomyopathies.
RESUMO
Tetralogy of Fallot (TOF) is the most common complex congenital heart disease with long-term survivors, demanding serial monitoring of the possible complications that can be encountered from the diagnosis to long-term follow-up. Cardiovascular imaging is key in the diagnosis and serial assessment of TOF patients, guiding patients' management and providing prognostic information. Thorough knowledge of the pathophysiology and expected sequalae in TOF, as well as the advantages and limitations of different non-invasive imaging modalities that can be used for diagnosis and follow-up, is the key to ensuring optimal management of patients with TOF. The aim of this manuscript is to provide a comprehensive overview of the role of each modality and common protocols used in clinical practice in the assessment of TOF patients.
RESUMO
Infective endocarditis (IE) represents an important medical challenge, particularly in patients with congenital heart diseases (CHD). Its early and accurate diagnosis is crucial for effective management to improve patient outcomes. Multimodality imaging is emerging as a powerful tool in the diagnosis and management of IE in CHD patients, offering a comprehensive and integrated approach that enhances diagnostic accuracy and guides therapeutic strategies. This review illustrates the utilities of each single multimodality imaging, including transthoracic and transoesophageal echocardiography, cardiac computed tomography (CCT), cardiovascular magnetic resonance imaging (CMR), and nuclear imaging modalities, in the diagnosis of IE in CHD patients. These imaging techniques provide crucial information about valvular and intracardiac structures, vegetation size and location, abscess formation, and associated complications, helping clinicians make timely and informed decisions. However, each one does have limitations that influence its applicability.
RESUMO
Since its first description in 1971, the Fontan procedure and its modifications have led to a substantial improvement in the survival rates of patients with a variety of types of complex Congenital Heart Disease (CHD) characterised by the presence of a single, dominant ventricle. However, despite the significant improvement of the prognosis over the years, Fontan patients are still exposed to several cardiovascular and systemic complications. It is, therefore, important to fully understand the pitfalls hidden behind a Fontan anatomy and the potential predictors of ventricular failure. Cardiovascular imaging plays a key role in this context, allowing for the early identification of complications with important prognostic implications. Echocardiography remains the first-line imaging modality for serial evaluation of Fontan patients. However, there is a growing role of cardiovascular magnetic resonance and cardiac computed tomography from pre-operative assessment to longitudinal follow-up. The aim of this paper will be to provide a comprehensive overview of the role, strengths, and weaknesses of each imaging modality in the assessment of congenital cardiac conditions palliated with the Fontan procedure.