Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(27): e2401131, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38563587

RESUMO

Flat panel reactors, coated with photocatalytic materials, offer a sustainable approach for the commercial production of hydrogen (H2) with zero carbon footprint. Despite this, achieving high solar-to-hydrogen (STH) conversion efficiency with these reactors is still a significant challenge due to the low utilization efficiency of solar light and rapid charge recombination. Herein, hybrid gold nano-islands (HGNIs) are developed on transparent glass support to improve the STH efficiency. Plasmonic HGNIs are grown on an in-house developed active glass sheet composed of sodium aluminum phosphosilicate oxide glass (H-glass) using the thermal dewetting method at 550 °C under an ambient atmosphere. HGNIs with various oxidation states (Au0, Au+, and Au-) and multiple interfaces are obtained due to the diffusion of the elements from the glass structure, which also facilitates the lifetime of the hot electron to be ≈2.94 ps. H-glass-supported HGNIs demonstrate significant STH conversion efficiency of 0.6%, without any sacrificial agents, via water dissociation. This study unveils the specific role of H-glass-supported HGNIs in facilitating light-driven chemical conversions, offering new avenues for the development of high-performance photocatalysts in various chemical conversion reactions for large-scale commercial applications.

2.
Phys Rev Lett ; 118(16): 167201, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474947

RESUMO

While current-induced spin-orbit torques have been extensively studied in ferromagnets and antiferromagnets, ferrimagnets have been less studied. Here we report the presence of enhanced spin-orbit torques resulting from negative exchange interaction in ferrimagnets. The effective field and switching efficiency increase substantially as CoGd approaches its compensation point, giving rise to 9 times larger spin-orbit torques compared to that of a noncompensated one. The macrospin modeling results also support efficient spin-orbit torques in a ferrimagnet. Our results suggest that ferrimagnets near compensation can be a new route for spin-orbit torque applications due to their high thermal stability and easy current-induced switching assisted by negative exchange interaction.

3.
Phys Rev Lett ; 119(15): 156801, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077457

RESUMO

Emergent phenomena at polar-nonpolar oxide interfaces have been studied intensely in pursuit of next-generation oxide electronics and spintronics. Here we report the disentanglement of critical thicknesses for electron reconstruction and the emergence of ferromagnetism in polar-mismatched LaMnO_{3}/SrTiO_{3} (001) heterostructures. Using a combination of element-specific x-ray absorption spectroscopy and dichroism, and first-principles calculations, interfacial electron accumulation, and ferromagnetism have been observed within the polar, antiferromagnetic insulator LaMnO_{3}. Our results show that the critical thickness for the onset of electron accumulation is as thin as 2 unit cells (UC), significantly thinner than the observed critical thickness for ferromagnetism of 5 UC. The absence of ferromagnetism below 5 UC is likely induced by electron overaccumulation. In turn, by controlling the doping of the LaMnO_{3}, we are able to neutralize the excessive electrons from the polar mismatch in ultrathin LaMnO_{3} films and thus enable ferromagnetism in films as thin as 3 UC, extending the limits of our ability to synthesize and tailor emergent phenomena at interfaces and demonstrating manipulation of the electronic and magnetic structures of materials at the shortest length scales.

4.
Phys Rev Lett ; 108(19): 195502, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003055

RESUMO

We report channeling patterns where clearly resolved effects of the narrow {111} planes are observed in axial and planar alignments for 2 MeV protons passing through a 55 nm [001] silicon membrane. At certain axes, such as <213> and <314>, the offset in atomic rows forming the narrow {111} planes results in shielding from the large potential at the wide {111} planes, producing a region of shallow, asymmetric potential from which axial channeling patterns have no plane of symmetry. At small tilts from such axes, different behavior is observed from the wide and narrow {111} planes. At planar alignment, distinctive channeling effects due to the narrow planes are observed. As a consequence of the shallow potential well at the narrow planes, incident protons suffer dechanneled trajectories which are excluded from channeling within the wide planes, resulting in an anomalously large scattered beam at {111} alignment.

5.
ACS Appl Mater Interfaces ; 14(46): 51855-51866, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36354751

RESUMO

Metal nanoparticles grafted within inert and porous wide-area supports are emerging as recyclable, sustainable catalysts for modern industry applications. Here, we bioengineered gold nanoparticle-based supported catalysts by utilizing the innate metal binding and reductive potential of eggshell as a sustainable strategy. Variable hand-recyclable wide-area three-dimensional catalysts between ∼80 ± 7 and 0.5 ± 0.1 cm2 are generated simply by controlling the size of the support. The catalyst possessed high-temperature stability (300 °C) and compatibility toward polar and nonpolar solvents, electrolytes, acids, and bases facilitating ultra-efficient catalysis of accordingly suspended substrates. Validation was done by large-volume (2.8 liters) dye detoxification, gram-scale hydrogenation of nitroarene, and the synthesis of propargylamine. Moreover, persistent recyclability, monitoring of reaction kinetics, and product intermediates are possible due to physical retrievability and interchangeability of the catalyst. Finally, the bionature of the support permits ∼76.9 ± 8% recovery of noble gold simply by immersing in a royal solution. Our naturally created, low-cost, scalable, hand-recyclable, and resilient supported mega-catalyst dwarfs most challenges for large-scale metal-based heterogeneous catalysis.

6.
ACS Appl Mater Interfaces ; 13(14): 16688-16693, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33793182

RESUMO

Ultrathin freestanding membranes with a pronounced metal-insulator transition (MIT) have huge potential for future flexible electronic applications as well as provide a unique aspect for the study of lattice-electron interplay. However, the reduction of the thickness to an ultrathin region (a few nm) is typically detrimental to the MIT in epitaxial films, and even catastrophic for their freestanding form. Here, we report an enhanced MIT in VO2-based freestanding membranes, with a lateral size up to millimeters and the VO2 thickness down to 5 nm. The VO2 membranes were detached by dissolving a Sr3Al2O6 sacrificial layer between the VO2 thin film and the c-Al2O3(0001) substrate, allowing the transfer onto arbitrary surfaces. Furthermore, the MIT in the VO2 membrane was greatly enhanced by inserting an intermediate Al2O3 buffer layer. In comparison with the best available ultrathin VO2 membranes, the enhancement of MIT is over 400% at a 5 nm VO2 thickness and more than 1 order of magnitude for VO2 above 10 nm. Our study widens the spectrum of functionality in ultrathin and large-scale membranes and enables the potential integration of MIT into flexible electronics and photonics.

7.
Nat Commun ; 8: 15070, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28429712

RESUMO

Semiconductor compounds are widely used for photocatalytic hydrogen production applications, where photogenerated electron-hole pairs are exploited to induce catalysis. Recently, powders of a metallic oxide (Sr1-xNbO3, 0.03

8.
Sci Rep ; 6: 33145, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27619076

RESUMO

Strongly correlated electronic systems such as Transition Metal Oxides often possess various mid-gap states originating from intrinsic defects in these materials. In this paper, we investigate an extremely sharp Photoluminescence (PL) transition originating from such defect states in two widely used perovskites, LaAlO3 and SrTiO3. A detailed study of the PL as a function of temperature and magnetic field has been conducted to understand the behavior and origin of the transition involved. The temperature dependence of the PL peak position for SrTiO3 is observed to be opposite to that in LaAlO3. Our results reveal the presence of a spin/orbital character in these transitions which is evident from the splitting of these defect energy levels under a high magnetic field. These PL transitions have the potential for enabling non-contact thermal and field sensors.

9.
Sci Rep ; 6: 36859, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845368

RESUMO

Here, we report the presence of defect-related states with magnetic degrees of freedom in crystals of LaAlO3 and several other rare-earth based perovskite oxides using inelastic light scattering (Raman spectroscopy) at low temperatures in applied magnetic fields of up to 9 T. Some of these states are at about 140 meV above the valence band maximum while others are mid-gap states at about 2.3 eV. No magnetic impurity could be detected in LaAlO3 by Proton-Induced X-ray Emission Spectroscopy. We, therefore, attribute the angular momentum-like states in LaAlO3 to cationic/anionic vacancies or anti-site defects. Comparison with the other rare earth perovskites leads to the empirical rule that the magnetic-field-sensitive transitions require planes of heavy elements (e.g. lanthanum) and oxygen without any other light cations in the same plane. These magnetic degrees of freedom in rare earth perovskites with useful dielectric properties may be tunable by appropriate defect engineering for magneto-optic applications.

10.
Sci Rep ; 6: 36352, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808272

RESUMO

In this study we report the existence of novel ultraviolet (UV) and blue emission in rare-earth based perovskite NdGaO3 (NGO) and the systematic quench of the NGO photoluminescence (PL) by Ce doping. Study of room temperature PL was performed in both single-crystal and polycrystalline NGO (substrates and pellets) respectively. Several NGO pellets were prepared with varying Ce concentration and their room temperature PL was studied using 325 nm laser. It was found that the PL intensity shows a systematic quench with increasing Ce concentration. XPS measurements indicated that nearly 50% of Ce atoms are in the 4+ state. The PL quench was attributed to the novel concept of super hydrogenic dopant (SHD)", where each Ce4+ ion contributes an electron which forms a super hydrogenic atom with an enhanced Bohr radius, due to the large dielectric constant of the host. Based on the critical Ce concentration for complete quenching this SHD radius was estimated to be within a range of 0.85 nm and 1.15 nm whereas the predicted theoretical value of SHD radius for NdGaO3 is ~1.01 nm.

11.
Sci Rep ; 5: 18282, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26669575

RESUMO

We show here a new phenomenon in La0.5Sr0.5TiO3/SrTiO3 (LSTO/STO) heterostructures; that is a coexistence of three-dimensional electron liquid (3DEL) and 2D electron gas (2DEG), separated by an intervening insulating LSTO layer. The two types of carriers were revealed through multi-channel analysis of the evolution of nonlinear Hall effect as a function of film thickness, temperature and back gate voltage. We demonstrate that the 3D electron originates from La doping in LSTO film and the 2D electron at the surface of STO is due to the polar field in the intervening insulating layer. As the film thickness is reduced below a critical thickness of 6 unit cells (uc), an abrupt metal-to-insulator transition (MIT) occurs without an intermediate semiconducting state. The properties of the LSTO layer grown on different substrates suggest that the insulating phase of the intervening layer is a result of interface strain induced by the lattice mismatch between the film and substrate. Further, by fitting the magnetoresistance (MR) curves, the 6 unit cell thick LSTO is shown to exhibit spin-orbital coupling. These observations point to new functionalities, in addition to magnetism and superconductivity in STO-based systems, which could be exploited in a multifunctional context.

12.
Sci Rep ; 5: 13011, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26265554

RESUMO

We report the observation of spatially separated Kondo scattering and ferromagnetism in anatase Ta0.06Ti0.94O2 thin films as a function of thickness (10-200 nm). The Kondo behavior observed in thicker films is suppressed on decreasing thickness and vanishes below ~25 nm. In 200 nm film, transport data could be fitted to a renormalization group theory for Kondo scattering though the carrier density in this system is lower by two orders of magnitude, the magnetic entity concentration is larger by a similar magnitude and there is strong electronic correlation compared to a conventional system such as Cu with magnetic impurities. However, ferromagnetism is observed at all thicknesses with magnetic moment per unit thickness decreasing beyond 10 nm film thickness. The simultaneous presence of Kondo and ferromagnetism is explained by the spatial variation of defects from the interface to surface which results in a dominantly ferromagnetic region closer to substrate-film interface while the Kondo scattering is dominant near the surface and decreasing towards the interface. This material system enables us to study the effect of neighboring presence of two competing magnetic phenomena and the possibility for tuning them.

13.
Nat Commun ; 5: 3663, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24728209

RESUMO

In condensed matter physics the quasi two-dimensional electron gas at the interface of two different insulators, polar LaAlO3 on nonpolar SrTiO3 (LaAlO3/SrTiO3) is a spectacular and surprising observation. This phenomenon is LaAlO3 film thickness dependent and may be explained by the polarization catastrophe model, in which a charge transfer of 0.5e(-) from the LaAlO3 film into the LaAlO3/SrTiO3 interface is expected. Here we show that in conducting samples (≥ 4 unit cells of LaAlO3) there is indeed a ~0.5e(-) transfer from LaAlO3 into the LaAlO3/SrTiO3 interface by studying the optical conductivity in a broad energy range (0.5-35 eV). Surprisingly, in insulating samples (≤ 3 unit cells of LaAlO3) a redistribution of charges within the polar LaAlO3 sublayers (from AlO2 to LaO) as large as ~0.5e(-) is observed, with no charge transfer into the interface. Hence, our results reveal the different mechanisms for the polarization catastrophe compensation in insulating and conducting LaAlO3/SrTiO3 interfaces.

14.
Philos Trans A Math Phys Eng Sci ; 370(1977): 4927-43, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22987036

RESUMO

We report room-temperature ferromagnetism (FM) in highly conducting, transparent anatase Ti(1-x)Ta(x)O(2) (x∼0.05) thin films grown by pulsed laser deposition on LaAlO(3) substrates. Rutherford backscattering spectrometry (RBS), X-ray diffraction, proton-induced X-ray emission, X-ray absorption spectroscopy (XAS) and time-of-flight secondary-ion mass spectrometry indicated negligible magnetic contaminants in the films. The presence of FM with concomitant large carrier densities was determined by a combination of superconducting quantum interference device magnetometry, electrical transport measurements, soft X-ray magnetic circular dichroism (SXMCD), XAS and optical magnetic circular dichroism, and was supported by first-principles calculations. SXMCD and XAS measurements revealed a 90 per cent contribution to FM from the Ti ions, and a 10 per cent contribution from the O ions. RBS/channelling measurements show complete Ta substitution in the Ti sites, though carrier activation was only 50 per cent at 5 per cent Ta concentration, implying compensation by cationic defects. The role of the Ti vacancy (V(Ti)) and Ti(3+) was studied via XAS and X-ray photoemission spectroscopy, respectively. It was found that, in films with strong FM, the V(Ti) signal was strong while the Ti(3+) signal was absent. We propose (in the absence of any obvious exchange mechanisms) that the localized magnetic moments, V(Ti) sites, are ferromagnetically ordered by itinerant carriers. Cationic-defect-induced magnetism is an alternative route to FM in wide-band-gap semiconducting oxides without any magnetic elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA