Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 58: 29-46, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30922960

RESUMO

Cancer cells show various types of mutations and aberrant expression in genes involved in DNA repair responses. These alterations induce genome instability and promote carcinogenesis steps and cancer progression processes. These defects in DNA repair have also been considered as suitable targets for cancer therapies. A most effective target so far clinically demonstrated is "homologous recombination repair defect", such as BRCA1/2 mutations, shown to cause synthetic lethality with inhibitors of poly(ADP-ribose) polymerase (PARP), which in turn is involved in DNA repair as well as multiple physiological processes. Different approaches targeting genomic instability, including immune therapy targeting mismatch-repair deficiency, have also recently been demonstrated to be promising strategies. In these DNA repair targeting-strategies, common issues could be how to optimize treatment and suppress/conquer the development of drug resistance. In this article, we review the extending framework of DNA repair response pathways and the potential impact of exploiting those defects on cancer treatments, including chemotherapy, radiation therapy and immune therapy.


Assuntos
Reparo do DNA/genética , Neoplasias/genética , Animais , Carcinogênese/genética , Instabilidade Genômica/genética , Humanos , Mutação/genética
2.
PLoS Genet ; 6(10)2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20949111

RESUMO

Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη(-/-)/POLζ(-/-) cells from the chicken DT40 cell line. POLζ(-/-) cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη(-/-)/POLζ(-/-) cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ(-/-) cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells.


Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/genética , Mutação , Animais , Antineoplásicos/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Galinhas , Cisplatino/farmacologia , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Células HEK293 , Humanos , Metanossulfonato de Metila/farmacologia , Modelos Genéticos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Supressão Genética , Raios Ultravioleta
3.
Biochem Biophys Res Commun ; 426(3): 310-6, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22943854

RESUMO

SUMO conjugation is a reversible posttranslational modification that regulates protein function. SENP1 is one of the six SUMO-specific proteases present in vertebrate cells and its altered expression is observed in several carcinomas. To characterize SENP1 role in genome integrity, we generated Senp1 knockout chicken DT40 cells. SENP1(-/-) cells show normal proliferation, but are sensitive to spindle poisons. This hypersensitivity correlates with increased sister chromatid separation, mitotic slippage, and apoptosis. To test whether the cohesion defect had a causal relationship with the observed mitotic events, we restored the cohesive status of sister chromatids by introducing the TOP2α(+/-) mutation, which leads to increased catenation, or by inhibiting Plk1 and Aurora B kinases that promote cohesin release from chromosomes during prolonged mitotic arrest. Although TOP2α is SUMOylated during mitosis, the TOP2α(+/-) mutation had no obvious effect. By contrast, inhibition of Plk1 or Aurora B rescued the hypersensitivity of SENP1(-/-) cells to colcemid. In conclusion, we identify SENP1 as a novel factor required for mitotic arrest and cohesion maintenance during prolonged mitotic arrest induced by spindle poisons.


Assuntos
Endopeptidases/fisiologia , Instabilidade Genômica , Mitose/fisiologia , Proteína SUMO-1/fisiologia , Fuso Acromático/fisiologia , Animais , Antígenos de Neoplasias/genética , Aurora Quinases , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Galinhas , Proteínas Cromossômicas não Histona/deficiência , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Demecolcina/farmacologia , Endopeptidases/genética , Mitose/efeitos dos fármacos , Nocodazol/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteína SUMO-1/genética , Fuso Acromático/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Vimblastina/análogos & derivados , Vimblastina/farmacologia , Vinorelbina , Coesinas , Quinase 1 Polo-Like
4.
Biochim Biophys Acta Mol Cell Res ; 1869(11): 119332, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35940372

RESUMO

Ultraviolet (UV) light irradiation generates pyrimidine dimers on DNA, such as cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts. Such dimers distort the high-order DNA structure and prevent transcription and replication. The nucleotide excision repair (NER) system contributes to resolving this type of DNA lesion. There are two pathways that recognize pyrimidine dimers. One acts on transcribed strands of DNA (transcription-coupled NER), and the other acts on the whole genome (global genome-NER; GG-NER). In the latter case, DNA damage-binding protein 2 (DDB2) senses pyrimidine dimers with several histone modification enzymes. We previously reported that histone acetyltransferase binding to ORC1 (HBO1) interacts with DDB2 and facilitates recruitment of the imitation switch chromatin remodeler at UV-irradiated sites via an unknown methyltransferase. Here, we found that the phosphorylated histone methyltransferase mixed lineage leukemia 1 (MLL1) was maintained at UV-irradiated sites in an HBO1-dependent manner. Furthermore, MLL1 catalyzed histone H3K4 methylation and recruited the chromatin remodeler bromodomain adjacent to zinc finger domain 1A (BAZ1A)/ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1). Depletion of MLL1 suppressed BAZ1A accumulation at UV-irradiated sites and inhibited the removal of CPDs. These data indicate that the DDB2-HBO1-MLL1 axis is essential for the recruitment of BAZ1A to facilitate GG-NER.


Assuntos
Leucemia , Dímeros de Pirimidina , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Reparo do DNA , Humanos , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo
5.
J Cell Biol ; 175(5): 703-8, 2006 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-17130289

RESUMO

Differential modifications of proliferating cell nuclear antigen (PCNA) determine DNA repair pathways at stalled replication forks. In yeast, PCNA monoubiquitination by the ubiquitin ligase (E3) yRad18 promotes translesion synthesis (TLS), whereas the lysine-63-linked polyubiquitination of PCNA by yRad5 (E3) promotes the error-free mode of bypass. The yRad5-dependent pathway is important to prevent genomic instability during replication, although its exact molecular mechanism is poorly understood. This mechanism has remained totally elusive in mammals because of the lack of apparent RAD5 homologues. We report that a putative tumor suppressor gene, SHPRH, is a human orthologue of yeast RAD5. SHPRH associates with PCNA, RAD18, and the ubiquitin-conjugating enzyme UBC13 (E2) and promotes methyl methanesulfonate (MMS)-induced PCNA polyubiquitination. The reduction of SHPRH by stable short hairpin RNA increases sensitivity to MMS and enhances genomic instability. Therefore, the yRad5/SHPRH-dependent pathway is a conserved and fundamental DNA repair mechanism that protects the genome from genotoxic stress.


Assuntos
DNA Helicases/genética , Instabilidade Genômica , Poliubiquitina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Linhagem Celular , Sequência Conservada , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Proc Natl Acad Sci U S A ; 105(34): 12411-6, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18719106

RESUMO

Chronic stalling of DNA replication forks caused by DNA damage can lead to genomic instability. Cells have evolved lesion bypass pathways such as postreplication repair (PRR) to resolve these arrested forks. In yeast, one branch of PRR involves proliferating cell nuclear antigen (PCNA) polyubiquitination mediated by the Rad5-Ubc13-Mms2 complex that allows bypass of DNA lesion by a template-switching mechanism. Previously, we identified human SHPRH as a functional homologue of yeast Rad5 and revealed the existence of RAD5-like pathway in human cells. Here we report the identification of HLTF as a second RAD5 homologue in human cells. HLTF, like SHPRH, shares a unique domain architecture with Rad5 and promotes lysine 63-linked polyubiquitination of PCNA. Similar to yeast Rad5, HLTF is able to interact with UBC13 and PCNA, as well as SHPRH; and the reduction of either SHPRH or HLTF expression enhances spontaneous mutagenesis. Moreover, Hltf-deficient mouse embryonic fibroblasts show elevated chromosome breaks and fusions after methyl methane sulfonate treatment. Our results suggest that HLTF and SHPRH are functional homologues of yeast Rad5 that cooperatively mediate PCNA polyubiquitination and maintain genomic stability.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Poliubiquitina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases , Dano ao DNA , Humanos , Proteínas de Saccharomyces cerevisiae , Homologia Estrutural de Proteína , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
7.
Mol Cancer Res ; 18(9): 1367-1378, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527949

RESUMO

Recent studies have demonstrated that lysine acetylation of histones is crucial for nucleotide excision repair (NER) by relaxing the chromatin structure, which facilitates the recruitment of repair factors. However, few studies have focused on the contribution of histone deacetylases (HDAC) to NER. Here, we found that histone H3 Lys14 (H3K14) was deacetylated by HDAC3 after UV irradiation. Depletion of HDAC3 caused defects in cyclobutene pyrimidine dimer excision and sensitized cells to UV irradiation. HDAC3-depleted cells had impaired unscheduled DNA synthesis, but not recovery of RNA synthesis, which indicates that HDAC3 was required for global genome NER. Moreover, xeroderma pigmentosum, complementation group C (XPC) accumulation at the local UV-irradiated area was attenuated in HDAC3-depleted cells. In addition to the delay of XPC accumulation at DNA damage sites, XPC ubiquitylation was inhibited in HDAC3-depleted cells. These results suggest that the deacetylation of histone H3K14 by HDAC3 after UV irradiation contributes to XPC recruitment to DNA lesions to promote global genome NER. IMPLICATIONS: Involvement of histone deacetylation for XPC accumulation after UV irradiation indicates conversion of chromatin structure is essential for nucleotide excision repair in human cancer cells.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Histona Desacetilases/genética , Humanos , Raios Ultravioleta/efeitos adversos
8.
Mol Cell Biol ; 26(4): 1424-33, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16449653

RESUMO

Gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. Previously, we showed that inactivation of Rad5 or Rad18, ubiquitin ligases (E3) targeting for proliferating cell nuclear antigen (PCNA), increases the de novo telomere addition type of GCR (S. Smith, J. Y. Hwang, S. Banerjee, A. Majeed, A. Gupta, and K. Myung, Proc. Natl. Acad. Sci. USA 101:9039-9044, 2004). GCR suppression by Rad5 and Rad18 appears to be exerted by the RAD5-dependent error-free mode of bypass DNA repair. In contrast, Siz1 SUMO ligase and another ubiquitin ligase, Bre1, which target for PCNA and histone H2B, respectively, have GCR-supporting activities. Inactivation of homologous recombination (HR) proteins or the helicase Srs2 reduces GCR rates elevated by the rad5 or rad18 mutation. GCRs are therefore likely to be produced through the restrained recruitment of an HR pathway to stalled DNA replication forks. Since this HR pathway is compatible with Srs2, it is not a conventional form of recombinational pathway. Lastly, we demonstrate that selection of proper DNA repair pathways to stalled DNA replication forks is controlled by the Mec1-dependent checkpoint and is executed by cooperative functions of Siz1 and Srs2. We propose a mechanism for how defects in these proteins could lead to diverse outcomes (proper repair or GCR formation) through different regulation of DNA repair machinery.


Assuntos
Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA Helicases , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Rearranjo Gênico , Genes Fúngicos , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Biológicos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
9.
J Leukoc Biol ; 84(4): 1047-56, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18653461

RESUMO

We previously proposed that mouse CD8(+)CD122(+) T cells and human CD57(+) T cells, which increase with age and exhibit potent IFN-gamma production, represent a double-edged sword as they play critical roles in host defense and the lethal IL-12/LPS-induced generalized Shwartzman reaction (GSR). However, our proposal was based solely on comparisons of young and old mice. In this study, we attempted to increase CD8(+)CD122(+) T cells in young mice with exogenous IL-15 and confirm their countervailing functions in young mice. After young mice (6 weeks) were injected with IL-15, they showed significant increases in CD8(+)CD122(+) T cells in the liver and spleen. Liver CD8(+)CD122(+) T cells from IL-15-pretreated mice had a potent capacity to produce IFN-gamma after IL-12 injection or Escherichia coli infection. IL-15-pretreated mice showed increased survival to E. coli infections and enhanced anti-tumor activities against liver metastatic EL4 cells, as well as an exacerbation of the GSR. Correspondingly, liver CD8(+)CD122(+) T cells produced more perforin than CD8(+)CD122(-) T cells in EL4-inoculated mice. Unexpectedly, comparable IL-15 treatment did not induce further increases in CD8(+)CD122(+) T cells in aged mice and did not enhance their defenses against bacterial infection or tumor growth. Interestingly, however, nontreated, aged mice (50 weeks) showed twofold higher IL-15 levels (but not TNF or IFN-gamma) in liver homogenates compared with young mice. Our results further support that CD8(+)CD122(+) T cells, which are increased physiologically or therapeutically by IL-15, are involved in antibacterial immunity, anti-tumor immunity, and the GSR.


Assuntos
Envelhecimento/imunologia , Infecções Bacterianas/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Escherichia coli/imunologia , Interleucina-15/uso terapêutico , Subunidade beta de Receptor de Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Experimentais/imunologia , Animais , Antígenos CD8/imunologia , Infecções por Escherichia coli/mortalidade , Citometria de Fluxo , Interferon gama/imunologia , Neoplasias Hepáticas Experimentais/imunologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Sobreviventes
11.
DNA Repair (Amst) ; 5(12): 1475-88, 2006 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16990054

RESUMO

Ionizing radiation-induced mutagenesis (IR-IM) underlies a basis for radiation associated carcinogenesis as well as resistance to radiation therapy. This process was examined in Saccharomyces cerevisiae using an array of isogenic DNA repair deficient mutants. Mutations inactivating homologous recombination (rad51, 52, 54) or nucleotide excision repair (rad1, rad10, rad4) caused elevated IR-IM whereas inactivation of TransLesion Synthesis (TLS: rad6) caused severely defective IR-IM. Of the mutations inactivating TLS polymerases, rev3 and rev1 caused equally severe defects in IR-IM whereas rad30 did not significantly affect the process. The effects of the rev3, rev1, and rad6 mutations on IR-IM were epistatic, suggesting the requirement of both polymerase zeta and Rev1p in IR-IM related TLS. Although PCNA K164 SUMOylation/ubiquitination is a proposed prerequisite for TLS, the IR-IM defect of a rev3 or a rad6 mutant was worse than and epistatic to the pol30K164R mutant, a mutant in which the PCNA had been mutated to abolish such modifications. These results suggested that IR-IM related TLS occurs in the absence of PCNA K164 modification. Further analysis of a mutant simultaneously defective in SUMOylation and mono-ubiquitination (rad18 siz1) revealed that these modifications redundantly affected TLS as well as NHEJ. A genetic model based on these observations is proposed.


Assuntos
Reparo do DNA , Mutação , Radiação Ionizante , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/fisiologia , Modelos Biológicos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
12.
J Leukoc Biol ; 79(3): 463-72, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16387840

RESUMO

A lethal human septic shock model, mouse generalized Shwartzman reaction (GSR), was elicited by two consecutive lippolysaccharide (LPS) injections (24 h apart) in which interferon-gamma (IFN-gamma) induced by interleukin (IL)-12 played a critical role in the priming phase, and tumor necrosis factor (TNF) was an important effector molecule in the second phase. We recently reported IL-12/LPS-induced mouse GSR age-dependently enhanced. We herein demonstrate that human peripheral blood mononuclear cells (PBMC) from healthy adults/elderly, cultured with IL-12 for 24 h and with LPS for an additional 24 h, produced a much larger amount of TNF (which increased age-dependently) than did PBMC without IL-12 priming. Whereas macrophages mainly produced TNF following LPS stimulation, macrophages and lymphocytes were necessary for a sufficient TNF production. IL-12-induced IFN-gamma up-regulated Toll-like receptor 4 (TLR-4) on macrophages of adults. Although the PBMC from children produced a substantial amount of IFN-gamma after IL-12 priming, the GSR response, with augmented TNF production and an up-regulated TLR-4 expression of macrophages, was not elicited by LPS stimulation. CD56+natural killer cells, CD56+T cells, and CD57+T cells (NK-T cells), which age-dependently increased in PBMC, produced much larger amounts of IFN-gamma after IL-12 priming than that of conventional CD56-CD57-T cells and also induced cocultured macrophages to produce TNF by subsequent LPS stimulation. The elder septic patients were consistently more susceptible to lethal shock with enhanced serum TNF levels than the adult patients. The NK cells, NK-T cells, and macrophages, which change proportionally or functionally with aging, might be involved in the enhanced GSR response/septic shock observed in elderly patients.


Assuntos
Envelhecimento/imunologia , Citocinas/imunologia , Leucócitos Mononucleares/imunologia , Choque Séptico/imunologia , Fenômeno de Shwartzman/imunologia , Adulto , Idoso , Antígeno CD56/imunologia , Antígenos CD57/imunologia , Adesão Celular/imunologia , Células Cultivadas , Criança , Citocinas/biossíntese , Citocinas/farmacologia , Feminino , Humanos , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-12/imunologia , Interleucina-12/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
13.
Mol Cell Biol ; 37(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28894029

RESUMO

DNA replication is frequently perturbed by intrinsic, as well as extrinsic, genotoxic stress. At damaged forks, DNA replication and repair activities require proper coordination to maintain genome integrity. We show here that PARI antirecombinase plays an essential role in modulating the initial response to replication stress in mice. PARI is functionally dormant at replisomes during normal replication, but upon replication stress, it enhances nascent-strand shortening that is regulated by RAD51 and MRE11. PARI then promotes double-strand break induction, followed by new origin firing instead of replication restart. Such PARI function is apparently obstructive to replication but is nonetheless physiologically required for chromosome stability in vivo and ex vivo Of note, Pari-deficient embryonic stem cells exhibit spontaneous chromosome instability, which is attenuated by differentiation induction, suggesting that pluripotent stem cells have a preferential requirement for PARI that acts against endogenous replication stress. PARI is a latent modulator of stalled fork processing, which is required for stable genome inheritance under both endogenous and exogenous replication stress in mice.


Assuntos
Instabilidade Cromossômica/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , Animais , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos
14.
Nat Commun ; 8: 16102, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28719581

RESUMO

HBO1, a histone acetyl transferase, is a co-activator of DNA pre-replication complex formation. We recently reported that HBO1 is phosphorylated by ATM and/or ATR and binds to DDB2 after ultraviolet irradiation. Here, we show that phosphorylated HBO1 at cyclobutane pyrimidine dimer (CPD) sites mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites. Furthermore, HBO1 facilitates accumulation of SNF2H and ACF1, an ATP-dependent chromatin remodelling complex, to CPD sites. Depletion of HBO1 inhibited repair of CPDs and sensitized cells to ultraviolet irradiation. However, depletion of HBO1 in cells derived from xeroderma pigmentosum patient complementation groups, XPE, XPC and XPA, did not lead to additional sensitivity towards ultraviolet irradiation. Our findings suggest that HBO1 acts in concert with SNF2H-ACF1 to make the chromosome structure more accessible to canonical nucleotide excision repair factors.


Assuntos
Reparo do DNA , Histona Acetiltransferases/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosforilação , Dímeros de Pirimidina/metabolismo , Fatores de Transcrição/metabolismo , Raios Ultravioleta
15.
Oncotarget ; 7(7): 7701-14, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26713604

RESUMO

Breast cancer is one of the leading causes of death worldwide, and therefore, new and improved approaches for the treatment of breast cancer are desperately needed. CtIP (RBBP8) is a multifunctional protein that is involved in various cellular functions, including transcription, DNA replication, DNA repair and the G1 and G2 cell cycle checkpoints. CtIP plays an important role in homologous recombination repair by interacting with tumor suppressor protein BRCA1. Here, we analyzed the expression profile of CtIP by data mining using published microarray data sets. We found that CtIP expression is frequently decreased in breast cancer patients, and the patient group with low-expressing CtIP mRNA is associated with a significantly lower survival rate. The knockdown of CtIP in breast cancer MCF7 cells reduced Rad51 foci numbers and enhanced f H2AX foci formation after f-irradiation, suggesting that deficiency of CtIP decreases homologous recombination repair and delays DNA double strand break repair. To explore the effect of CtIP on PARP inhibitor therapy for breast cancer, CtIP-depleted MCF7 cells were treated with PARP inhibitor olaparib (AZD2281) or veliparib (ABT-888). As in BRCA mutated cells, PARP inhibitors showed cytotoxicity to CtIP-depleted cells by preventing cells from repairing DNA damage, leading to decreased cell viability. Further, a xenograft tumor model in mice with MCF7 cells demonstrated significantly increased sensitivity towards PARP inhibition under CtIP deficiency. In summary, this study shows that low level of CtIP expression is associated with poor prognosis in breast cancer, and provides a rationale for establishing CtIP expression as a biomarker of PARP inhibitor response, and consequently offers novel therapeutic options for a significant subset of patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proteínas de Transporte/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas Nucleares/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação/genética , Animais , Apoptose , Proteína BRCA1/genética , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Proliferação de Células , Endodesoxirribonucleases , Feminino , Imunofluorescência , Seguimentos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Pessoa de Meia-Idade , Gradação de Tumores , Proteínas Nucleares/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Methods Mol Biol ; 1114: 25-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24557895

RESUMO

Reverse genetics is gaining importance in the field of modern biological sciences. Gene disruption and the use of siRNAs are the favored techniques for current research. Many researchers, however, are aware that the data from siRNA experiments are frequently inconsistent and that epistatic analysis of multiple genes using siRNAs is barely feasible. In recognition of the drawbacks of the siRNA technique, many researchers, especially in the field of DNA repair, are now introducing multiple genetic disruption techniques using the chicken DT40 cell line into their research. Thus, recent publications increasingly include data utilizing DT40 cells. In this chapter, we describe the current standard methods of multiple genetic manipulation in DT40 cells. We place a particular emphasis on describing the basic concepts and theoretical background of the genetic manipulation of DT40 cells for researchers who are new to such techniques.


Assuntos
Marcação de Genes/métodos , Engenharia Genética , Alelos , Animais , Linhagem Celular , Galinhas , Expressão Gênica , Plasmídeos/genética , Transgenes
19.
DNA Repair (Amst) ; 10(2): 210-24, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21130053

RESUMO

DPB11/TopBP1 is an essential evolutionarily conserved gene involved in initiation of DNA replication and checkpoint signaling. Here, we show that Saccharomyces cerevisiae Dpb11 forms nuclear foci that localize to sites of DNA damage in G1, S and G2 phase, a recruitment that is conserved for its homologue TopBP1 in Gallus gallus. Damage-induced Dpb11 foci are distinct from Sld3 replication initiation foci. Further, Dpb11 foci are dependent on the checkpoint proteins Mec3 (9-1-1 complex) and Rad24, and require the C-terminal domain of Dpb11. Dpb11 foci are independent of the checkpoint kinases Mec1 and Tel1, and of the checkpoint mediator Rad9. In a site-directed mutagenesis screen, we identify a separation-of-function mutant, dpb11-PF, that is sensitive to DSB-inducing agents yet remains proficient for DNA replication and the S-phase checkpoint at the permissive temperature. The dpb11-PF mutant displays altered rates of heteroallelic and direct-repeat recombination, sensitivity to DSB-inducing drugs as well as delayed kinetics of mating-type switching with a defect in the DNA synthesis step thus implicating Dpb11 in homologous recombination. We conclude that Dpb11/TopBP1 plays distinct roles in replication, checkpoint response and recombination processes, thereby contributing to chromosomal stability.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Instabilidade Cromossômica , Replicação do DNA , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Animais , Proteínas de Ciclo Celular/genética , Galinhas/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Fase G2 , Genes cdc , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Mutagênese Sítio-Dirigida , Fase S , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
20.
Cancer Lett ; 283(1): 1-9, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19201084

RESUMO

Proteasome-dependent protein degradation is involved in a variety of biological processes, including cell-cycle regulation, apoptosis, and stress-responses. Growing evidence from translational research and clinical trials proved the effectiveness of proteasome inhibitors (PIs) in treating several types of hematological malignancies. Although various key molecules in ubiquitin-dependent cellular processes have been proposed as relevant targets of therapeutic proteasome inhibition, our current understanding is far from complete. Recent rapid progress in DNA repair research has unveiled a crucial role of the ubiquitin-proteasome pathway (UPP) in regulating DNA repair. These findings thus bring up the idea that DNA repair pathways could be effective targets of PIs in mediating their cytotoxicity and enhancing the effect of radiotherapy and some DNA-damaging chemotherapeutic agents, such as cisplatin and camptothecin. In this review, we present the current perspective on the UPP-dependent regulatory mechanisms of DNA repair and discuss their therapeutic potential in the application of PIs to a broad spectrum of human cancers.


Assuntos
Reparo do DNA/fisiologia , Neoplasias/genética , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo , Reparo do DNA/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA