Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Nat Prod ; 85(1): 63-69, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34949088

RESUMO

A recently discovered secondary metabolism regulator, NPD938, was used to alter the secondary metabolite profile in Fusarium sp. RK97-94. Three lucilactaene analogues were detected via UPLC-ESI-MS analysis in NPD938-treated culture. The three metabolites were successfully purified and identified as dihydroNG391 (1), dihydrolucilactaene (2), and 13α-hydroxylucilactaene (3) via extensive spectroscopic analyses. DihydroNG391 (1) exhibited weak in vitro antimalarial activity (IC50 = 62 µM). In contrast, dihydrolucilactaene (2) and 13α-hydroxylucilactaene (3) showed very potent antimalarial activity (IC50 = 0.0015 and 0.68 µM, respectively). These findings provide insight into the structure-activity relationship of lucilactaene and its analogues as antimalarial lead compounds.


Assuntos
Antimaláricos/farmacologia , Fusarium/química , Antimaláricos/química , Antimaláricos/isolamento & purificação , Cromatografia/métodos , Humanos , Metabolismo Secundário , Análise Espectral/métodos , Relação Estrutura-Atividade
2.
J Biol Chem ; 295(33): 11602-11612, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32565425

RESUMO

Many microbial secondary metabolites are produced by multienzyme complexes comprising nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). The ketosynthase (KS) domains of polyketide synthase normally catalyze the decarboxylative Claisen condensation of acyl and malonyl blocks to extend the polyketide chain. However, the terminal KS domain in tenuazonic acid synthetase 1 (TAS1) from the fungus Pyricularia oryzae conducts substrate cyclization. Here, we report on the unique features of the KS domain in TAS1. We observed that this domain is monomeric, not dimeric as is typical for KSs. Analysis of a 1.68-Å resolution crystal structure suggests that the substrate cyclization is triggered via proton abstraction from the active methylene moiety in the substrate by a catalytic His-322 residue. Additionally, we show that TAS1 KS promiscuously accepts aminoacyl substrates and that this promiscuity can be increased by a single amino acid substitution in the substrate-binding pocket of the enzyme. These findings provide insight into a KS domain that accepts the amino acid-containing substrate in an NRPS-PKS hybrid enzyme and provide hints to the substrate cyclization mechanism performed by the KS domain in the biosynthesis of the mycotoxin tenuazonic acid.


Assuntos
Ascomicetos/enzimologia , Peptídeo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Ácido Tenuazônico/metabolismo , Ascomicetos/química , Ascomicetos/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Peptídeo Sintases/química , Policetídeo Sintases/química , Conformação Proteica , Domínios Proteicos
3.
Biosci Biotechnol Biochem ; 85(10): 2200-2208, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34379730

RESUMO

The control of secondary metabolism in fungi is essential for the regulation of various cellular functions. In this study, we searched the RIKEN Natural Products Depository (NPDepo) chemical library for inducers of tenuazonic acid (TeA) production in the rice blast fungus Pyricularia oryzae and identified NPD938. NPD938 transcriptionally induced TeA production. We explored the mode of action of NPD938 and observed that this compound enhanced TeA production via LAE1, a global regulator of fungal secondary metabolism. NPD938 could also induce production of terpendoles and pyridoxatins in Tolypocladium album RK99-F33. Terpendole production was induced transcriptionally. We identified the pyridoxatin biosynthetic gene cluster among transcriptionally induced secondary metabolite biosynthetic gene clusters. Therefore, NPD938 is useful for the control of fungal secondary metabolism.


Assuntos
Ácido Tenuazônico , Ascomicetos , Regulação Fúngica da Expressão Gênica , Metabolismo Secundário
4.
Biosci Biotechnol Biochem ; 86(1): 135-139, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34755835

RESUMO

Tenuazonic acid (TeA) is a toxin produced by the rice blast fungus Pyricularia oryzae. Although knockout of the TeA biosynthetic gene TAS1 did not affect the virulence of P. oryzae, constitutive TAS1 expression suppressed its infection. TAS1 expression was induced alongside transition of P. oryzae infection behavior. The results suggested that controlling TeA biosynthesis is important for P. oryzae infection.


Assuntos
Ascomicetos
5.
Biosci Biotechnol Biochem ; 85(5): 1290-1293, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33784739

RESUMO

Dihydropyriculol is a major secondary metabolite of Pyricularia oryzae. However, the biological activity of dihydropyriculol has not been reported. Here, we showed that dihydropyriculol has inhibitory activity against Streptomyces griseus. Localization analysis of dihydropyriculol revealed that dihydropyriculol could reach to S. griseus under confrontation culture. These results suggest that dihydropyriculol can be used as a chemical weapon against S. griseus.


Assuntos
Antibacterianos/toxicidade , Ascomicetos/metabolismo , Benzaldeídos/toxicidade , Álcoois Graxos/toxicidade , Streptomyces griseus/efeitos dos fármacos , Toxinas Biológicas/toxicidade , Antibacterianos/biossíntese , Antibiose , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Benzaldeídos/metabolismo , Cicloeximida/farmacologia , Álcoois Graxos/metabolismo , Gentamicinas/farmacologia , Higromicina B/farmacologia , Testes de Sensibilidade Microbiana , Metabolismo Secundário/efeitos dos fármacos , Streptomyces griseus/crescimento & desenvolvimento , Toxinas Biológicas/biossíntese
6.
Biosci Biotechnol Biochem ; 85(1): 126-133, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33577666

RESUMO

Pyricularia oryzae is one of the most devastating plant pathogens in the world. This fungus produces several secondary metabolites including the phytotoxin pyriculols, which are classified into 2 types: aldehyde form (pyriculol and pyriculariol) and alcohol form (dihydropyriculol and dihydropyriculariol). Although interconversion between the aldehyde form and alcohol form has been predicted, and the PYC10 gene for the oxidation of alcohol form to aldehyde is known, the gene responsible for the reduction of aldehyde to alcohol form is unknown. Furthermore, previous studies have predicted that alcohol analogs are biosynthesized via aldehyde analogs. Herein, we demonstrated that an aldo/keto reductase PYC7 is responsible for the reduction of aldehyde to alcohol congeners. The results indicate that aldehyde analogs are biosynthesized via alcohol analogs, contradicting the previous prediction. The results suggest that P. oryzae controls the amount of pyriculol analogs using two oxidoreductases, PYC7 and PYC10, thereby controlling the bioactivity of the phytotoxin.


Assuntos
Aldeído Redutase/metabolismo , Ascomicetos/metabolismo , Benzaldeídos/metabolismo , Álcoois Graxos/metabolismo , Micotoxinas/biossíntese , Benzaldeídos/química , Álcoois Graxos/química , Micotoxinas/química
7.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34379774

RESUMO

Filamentous fungi have many secondary metabolism genes and produce a wide variety of secondary metabolites with complex and unique structures. However, the role of most secondary metabolites remains unclear. Moreover, most fungal secondary metabolism genes are silent or poorly expressed under laboratory conditions and are difficult to utilize. Pyricularia oryzae, the causal pathogen of rice blast disease, is a well-characterized plant pathogenic fungus. P. oryzae also has a large number of secondary metabolism genes and appears to be a suitable organism for analyzing secondary metabolites. However, in case of this fungus, biosynthetic genes for only four groups of secondary metabolites have been well characterized. Among two of the four groups of secondary metabolites, biosynthetic genes were identified by activating secondary metabolism. These secondary metabolites include melanin, a polyketide compound required for rice infection; tenuazonic acid, a well-known mycotoxin produced by various plant pathogenic fungi and biosynthesized by a unique nonribosomal peptide synthetase-polyketide synthase hybrid enzyme; nectriapyrones, antibacterial polyketide compounds produced mainly by symbiotic fungi, including plant pathogens and endophytes, and pyriculols, phytotoxic polyketide compounds. This review mainly focuses on the biosynthesis and biological functions of the four groups of P. oryzae secondary metabolites.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Ascomicetos/genética , Magnaporthe/genética , Doenças das Plantas
8.
Biosci Biotechnol Biochem ; 84(5): 876-886, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31942814

RESUMO

Enokipodins are antimicrobial sesquiterpenes produced by Flammulina velutipes in a mycelial culture medium. To date, enokipodin production has not been reported in other members of the genus Flammulina. Hence, in this study, the production of enokipodins A, B, C, and D by F. velutipes and F. rossica was investigated. Some strains of F. rossica were confirmed to produce at least one of the four enokipodins in the culture medium. However, some strains of F. velutipes did not produce any of the enokipodins. In an antibacterial assay using liquid medium, enokipodin B showed the strongest growth inhibitory activity against Bacillus subtilis among the four types of enokipodins. Enokipodin B inhibited the spore germination of some plant pathogenic fungi. Enokipodins B and D exerted moderate anti-proliferative activity against some cancer cell lines, and enokipodins A and C inhibited the proliferation of the malarial parasite, Plasmodium falciparum.


Assuntos
Anti-Infecciosos/metabolismo , Antineoplásicos/metabolismo , Flammulina/metabolismo , Sesquiterpenos/metabolismo , Animais , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/metabolismo , Células HL-60 , Células HeLa , Humanos , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Ratos , Sesquiterpenos/farmacologia , Esporos Fúngicos/efeitos dos fármacos
9.
Biosci Biotechnol Biochem ; 84(6): 1303-1307, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32043422

RESUMO

We identified the biosynthetic gene cluster for lucilactaene, a cell cycle inhibitor from a filamentous fungus Fusarium sp. RK 97-94. The luc1 knockout strain accumulated demethylated analogs, indicating the involvement of Luc1 methyltransferase in lucilactaene biosynthesis. Lucilactaene showed potent antimalarial activity. Our data suggested that methylation and ether ring formation are essential for its potent antimalarial activity.


Assuntos
Antimaláricos/metabolismo , Furanos/metabolismo , Fusarium/genética , Fusarium/metabolismo , Família Multigênica , Pirróis/metabolismo , Antimaláricos/farmacologia , Ciclo Celular/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Furanos/farmacologia , Técnicas de Inativação de Genes , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Microrganismos Geneticamente Modificados , Pirróis/farmacologia
10.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218033

RESUMO

Plant pathogenic fungi produce a wide variety of secondary metabolites with unique and complex structures. However, most fungal secondary metabolism genes are poorly expressed under laboratory conditions. Moreover, the relationship between pathogenicity and secondary metabolites remains unclear. To activate silent gene clusters in fungi, successful approaches such as epigenetic control, promoter exchange, and heterologous expression have been reported. Pyricularia oryzae, a well-characterized plant pathogenic fungus, is the causal pathogen of rice blast disease. P. oryzae is also rich in secondary metabolism genes. However, biosynthetic genes for only four groups of secondary metabolites have been well characterized in this fungus. Biosynthetic genes for two of the four groups of secondary metabolites have been identified by activating secondary metabolism. This review focuses on the biosynthesis and roles of the four groups of secondary metabolites produced by P. oryzae. These secondary metabolites include melanin, a polyketide compound required for rice infection; pyriculols, phytotoxic polyketide compounds; nectriapyrones, antibacterial polyketide compounds produced mainly by symbiotic fungi including endophytes and plant pathogens; and tenuazonic acid, a well-known mycotoxin produced by various plant pathogenic fungi and biosynthesized by a unique NRPS-PKS enzyme.


Assuntos
Ascomicetos/metabolismo , Regulação Fúngica da Expressão Gênica , Oryza/microbiologia , Doenças das Plantas/microbiologia , Metabolismo Secundário , Ascomicetos/genética
11.
Chembiochem ; 20(5): 693-700, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30443971

RESUMO

Most fungal secondary metabolism genes are poorly expressed under laboratory conditions. Nectriapyrones are known as secondary metabolites produced mainly by symbiotic fungi, including endophytes and plant pathogens. Herein, we show the induction of nectriapyrone production in the rice blast fungus Pyricularia oryzae. The two-component signal transduction system was disturbed by disrupting OSM1 and PoYPD1, which encoded a HOG MAP kinase and a His-containing phosphotransfer (HPt) protein, respectively. This induced the production of two polyketide compounds: nectriapyrone and its hydroxylated analogue. The nectriapyrone biosynthetic gene cluster consists of a polyketide synthase gene (NEC1) and an O-methyltransferase gene (NEC2). Overexpression of the two genes induced overproduction of nectriapyrone and five nectriapyrone analogues, including a new derivative. Nectriapyrone production was not required for the infection of rice. The structure of nectriapyrone is similar to that of the germicidins produced by Streptomyces spp., and nectriapyrone inhibited the growth of Streptomyces griseus.


Assuntos
Magnaporthe , Monoterpenos/metabolismo , Metabolismo Secundário/genética , Genes Fúngicos , Magnaporthe/genética , Magnaporthe/metabolismo , Família Multigênica , Transdução de Sinais/genética
12.
Pestic Biochem Physiol ; 138: 1-7, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28456298

RESUMO

Trichothecene mycotoxins often accumulate in apparently normal grains of cereal crops. In an effort to develop an agricultural chemical to reduce trichothecene contamination, we screened trichothecene production inhibitors from the compounds on the chemical arrays. By using the trichodiene (TDN) synthase tagged with hexahistidine (rTRI5) as a target protein, 32 hit compounds were obtained from chemical library of the RIKEN Natural Product Depository (NPDepo) by chemical array screening. At 10µgmL-1, none of the 32 chemicals inhibited trichothecene production by Fusarium graminearum in liquid culture. Against the purified rTRI5 enzyme, however, NPD10133 [progesterone 3-(O-carboxymethyl)oxime amide-bonded to phenylalanine] showed weak inhibitory activity at 10µgmL-1 (18.7µM). For the screening of chemicals inhibiting trichothecene accumulation in liquid culture, 20 analogs of NPD10133 selected from the NPDepo chemical library were assayed. At 10µM, only NPD352 [testosterone 3-(O-carboxymethyl)oxime amide-bonded to phenylalanine methyl ester] inhibited rTRI5 activity and trichothecene production. Kinetic analysis suggested that the enzyme inhibition was of a mixed-type. The identification of NPD352 as a TDN synthase inhibitor lays the foundation for the development of a more potent inhibitor via systematic introduction of wide structural diversity on the gonane skeleton and amino acid residues.


Assuntos
Carbono-Carbono Liases/antagonistas & inibidores , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Fusarium/metabolismo , Tricotecenos/antagonistas & inibidores , Inibidores Enzimáticos , Bibliotecas de Moléculas Pequenas
13.
Bioorg Med Chem Lett ; 26(24): 5843-5850, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27865702

RESUMO

The diversity of natural products is greater than that of combinatorial chemistry compounds and is similar to that of drugs. Compounds rich in sp3 carbons, such as natural products, typically exhibit high structural complexity and high specificity to molecular targets. Microorganisms can synthesize such sp3 carbon-rich compounds and can be used as excellent factories for making bioactive compounds. Here, we mainly focus on pathway engineering of two sp3 carbon-rich bioactive indole alkaloids, fumitremorgin C and terpendole E. We also demonstrate the importance of activation of secondary metabolism by focusing on tenuazonic acid, a bioactive tetramic acid compound, as an example.


Assuntos
Produtos Biológicos/metabolismo , Diterpenos/metabolismo , Fungos/metabolismo , Alcaloides Indólicos/metabolismo , Indóis/metabolismo , Ácido Tenuazônico/metabolismo , Produtos Biológicos/química , Diterpenos/química , Alcaloides Indólicos/química , Indóis/química , Estrutura Molecular , Metabolismo Secundário , Ácido Tenuazônico/química
14.
Chembiochem ; 15(7): 934-8, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24648249

RESUMO

Terpendole E is first natural product found to inhibit mitotic kinesin Eg5, but its inhibitory mechanism remains to be revealed. Here, we report the effects of terpendole E and 11ketopaspaline (a new natural terpendole E analogue) on the Eg5-microtubule interaction and in several Eg5 mutants. 11-Ketopaspaline is a shunt product from terpendole E, and it shows potent inhibitory activity against the microtubule-stimulated ATPase activity of Eg5. Unlike other Eg5 inhibitors, such as S-trityl-L-cysteine (STLC) and GSK-1, both terpendole E and 11-ketopaspaline only partially inhibited Eg5-microtubule interaction. Furthermore, terpendole E and 11-ketopaspaline inhibited several Eg5 mutants that are resistant to STLC (Eg5(D130A), Eg5(L214A)) or GSK-1 (Eg5(I299F), Eg5(A356T)), but with the same extent of inhibition against wild-type Eg5. Because Eg5(D130A) and Eg5(L214A) show cross-resistance to most known Eg5 inhibitors, which bind the L5 loop, these results suggest that terpendole E and its analogues have a different binding site and/or inhibitory mechanism to those for L5 loop-binding type Eg5 inhibitors.


Assuntos
Cisteína/análogos & derivados , Diterpenos/metabolismo , Diterpenos/farmacologia , Indóis/metabolismo , Indóis/farmacologia , Cinesinas/metabolismo , Microtúbulos/metabolismo , Oligopeptídeos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Cisteína/metabolismo , Cisteína/farmacologia , Diterpenos/química , Eletroforese em Gel Bidimensional , Células HeLa , Humanos , Indóis/química , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Cinética , Espectroscopia de Ressonância Magnética , Microtúbulos/química , Mutagênese , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Proteoma/análise
15.
Biosci Biotechnol Biochem ; 77(9): 1958-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24018674

RESUMO

Trichothecene 3-O-acetyltransferase (TRI101) is an indispensable enzyme for the biosynthesis of trichothecenes, a group of mycotoxins produced by Fusarium graminearum. In this study, an inhibitor of TRI101 was identified by chemical array analysis using compounds from the RIKEN Natural Products Depository (NPDepo) library. Although the addition of the identified enzyme inhibitor to the fungal culture did not inhibit trichothecene production, it can serve as a candidate lead compound in the development of a mycotoxin inhibitor that inactivates fungal defense mechanisms.


Assuntos
Acetiltransferases/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Fatores de Tempo , Valeratos/química , Valeratos/farmacologia
16.
Mol Plant Pathol ; 24(11): 1451-1464, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37522511

RESUMO

Colletotrichum higginsianum is a hemibiotrophic pathogen that causes anthracnose disease on crucifer hosts, including Arabidopsis thaliana. Despite the availability of genomic and transcriptomic information and the ability to transform both organisms, identifying C. higginsianum genes involved in virulence has been challenging due to recalcitrance to gene targeting and redundancy of virulence factors. To overcome these obstacles, we developed an efficient method for multiple gene disruption in C. higginsianum by combining CRISPR/Cas9 and a URA3-based marker recycling system. Our method significantly increased the efficiency of gene knockout via homologous recombination by introducing genomic DNA double-strand breaks. We demonstrated the applicability of the URA3-based marker recycling system for multiple gene targeting in the same strain. Using our technology, we successfully targeted two melanin biosynthesis genes, SCD1 and PKS1, which resulted in deficiency in melanization and loss of pathogenicity in the mutants. Our findings demonstrate the effectiveness of our methods in analysing virulence factors in C. higginsianum, thus accelerating research on plant-fungus interactions.


Assuntos
Arabidopsis , Colletotrichum , Técnicas de Inativação de Genes , Sistemas CRISPR-Cas/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Fatores de Virulência/genética , Colletotrichum/genética
17.
ACS Chem Biol ; 18(2): 396-403, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36692171

RESUMO

Proteasome inhibitors with γ-lactam structure, such as lactacystin and salinosporamide A, have been isolated from actinomycetes and have attracted attention as lead compounds for anticancer drugs. Previously, we identified a unique enzyme TAS1, which is the first reported fungal NRPS-PKS hybrid enzyme, from the filamentous fungus Pyricularia oryzae for the biosynthesis of a mycotoxin tenuazonic acid, a tetramic acid compound without γ-lactam structure. Homologues of TAS1 have been identified in several fungal genomes and classified into four groups (A-D). Here, we show that the group D TAS1 homologues from two filamentous fungi can biosynthesize γ-lactam compounds, taslactams A-D, with high similarity to actinomycete proteasome inhibitors. One of the γ-lactam compounds, taslactam C, showed potent proteasome inhibitory activity. In contrast to actinomycete γ-lactam compounds which require multiple enzymes for biosynthesis, the TAS1 homologue alone was sufficient for the biosynthesis of the fungal γ-lactam compounds.


Assuntos
Actinobacteria , Micotoxinas , Inibidores de Proteassoma/farmacologia , Lactamas/química , Peptídeo Sintases/química
18.
J Antibiot (Tokyo) ; 75(7): 361-374, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35484225

RESUMO

Fusarium sp. RK97-94 is a producer of potent antimalarial compounds such as lucilactaene and its derivatives. The biosynthetic gene cluster of lucilactaene was identified but only a knockout mutant of methyltransferase (luc1) was reported in previous papers. Herein, we report on isolation and identification of prelucilactaene G (1), and prelucilactaene H (2) from the aldehyde dehydrogenase knockout strain (∆luc3) culture broth, as well as prelucilactaene A (3), prelucilactaene B (4), and two isomeric mixtures of prelucilactaene E (5) and prelucilactaene F (6), from the P450 monooxygenase knockout strain (∆luc2) culture broth. Our data, unlike the previous ones, suggest the involvement of the aldehyde dehydrogenase (Luc3) in lucilactaene biosynthesis, and support the involvement of the P450 monooxygenase (Luc2) in C-20 hydroxylation rather than C-13-C-14 epoxidation or C-15 hydroxylation. Isolated compounds displayed moderate to strong antimalarial activities, and the structure-activity relationship of lucilactaene derivatives was examined.


Assuntos
Antimaláricos , Fusarium , Aldeído Desidrogenase/genética , Antimaláricos/farmacologia , Furanos , Fusarium/genética , Oxigenases de Função Mista , Pirróis
19.
J Agric Food Chem ; 70(10): 3109-3116, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234040

RESUMO

Melanin is a secondary metabolite required for the infection of the rice blast fungus Pyricularia oryzae. Melanin biosynthesis enzymes are targets for controlling rice blast disease, and three types of commercial melanin biosynthesis inhibitors (MBIs) including MBI-R, MBI-D, and MBI-P have been developed. However, the occurrence of MBI-D-resistant strains containing scytalone dehydratase (SDH1/RSY1) with V75M mutations has been recently reported. In this study, we aimed to identify inhibitors of SDH1-V75M. We screened the RIKEN Natural Products Depository chemical library using chemical array technology and evaluated the inhibition of SDH1-V75M by candidate compounds. NPD13731 strongly inhibited the activity of wild-type and mutant SDH1. The structure-activity relationship data were used to create a more potent inhibitor 16, which controlled rice blast disease in rice plants infected with MBI-D-resistant P. oryzae. Compound 16, which we named melabiostin, may be used to develop fungicides for controlling rice blast infections.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Hidroliases/metabolismo , Melaninas , Oryza/metabolismo , Doenças das Plantas/microbiologia
20.
Int J Biol Macromol ; 215: 303-311, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35718153

RESUMO

Fungi belonging to the Ascomycete genus Cordyceps are endoparasitoids and parasites, mainly of insects and other arthropods. Cordyceps militaris has been used as a therapeutic drug for cancer patients. However, the infection, parasitism, and fruiting body formation mechanisms of this fungus are still unknown. Based on our hypothesis that lectin(s) is involved in the interaction between the C. militaris fungi and insects, we partially purified and characterized a new lectin from C. militaris, designated CmLec4. In addition, we searched for substance(s) in the infected silkworm extracts that could bind to CmLec4, and succeeded in purifying the sex-specific storage protein 2 as a specific binding target. To examine function of the binding protein during the process of parasitism, we investigated the effect of recombinant CmLec4 on silkworms by inoculating the protein into silkworm pupae, and found that it significantly delayed emergence compared to the control. Furthermore, cmlec4 gene knockout strains constructed in this study produced markedly lower amounts of fruiting body than the wild-type strain. All the results revealed that the lectin CmLec4 produced by C. militaris would be involved in the infection into silkworm and fruiting body formation from the host.


Assuntos
Cordyceps , Animais , Cordyceps/química , Carpóforos/química , Humanos , Insetos , Lectinas/metabolismo , Pupa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA