RESUMO
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Intraplate magmatic provinces found away from plate boundaries provide direct sampling of the composition and heterogeneity of the Earth's mantle. The chemical heterogeneities that have been observed in the mantle are usually attributed to recycling during subduction1-3, which allows for the addition of volatiles and incompatible elements into the mantle. Although many intraplate volcanoes sample deep-mantle reservoirs-possibly at the core-mantle boundary4-not all intraplate volcanoes are deep-rooted5, and reservoirs in other, shallower boundary layers are likely to participate in magma generation. Here we present evidence that suggests Bermuda sampled a previously unknown mantle domain, characterized by silica-undersaturated melts that are substantially enriched in incompatible elements and volatiles, and a unique, extreme isotopic signature. To our knowledge, Bermuda records the most radiogenic 206Pb/204Pb isotopes that have been documented in an ocean basin (with 206Pb/204Pb ratios of 19.9-21.7) using high-precision methods. Together with low 207Pb/204Pb ratios (15.5-15.6) and relatively invariant Sr, Nd, and Hf isotopes, the data suggest that this source must be less than 650 million years old. We therefore interpret the Bermuda source as a previously unknown, transient mantle reservoir that resulted from the recycling and storage of incompatible elements and volatiles6-8 in the transition zone (between the upper and lower mantle), aided by the fractionation of lead in a mineral that is stable only in this boundary layer, such as K-hollandite9,10. We suggest that recent recycling into the transition zone, related to subduction events during the formation of Pangea, is the reason why this reservoir has only been found in the Atlantic Ocean. Our geodynamic models suggest that this boundary layer was sampled by disturbances related to mantle flow. Seismic studies and diamond inclusions6,7 have shown that recycled materials can be stored in the transition zone11. For the first time, to our knowledge, we show geochemical evidence that this storage is key to the generation of extreme isotopic domains that were previously thought to be related only to deep recycling.
RESUMO
Earth's tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth's dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.
RESUMO
Sedimentary rocks from Virginia through Florida record marine flooding during the mid-Pliocene. Several wave-cut scarps that at the time of deposition would have been horizontal are now draped over a warped surface with a maximum variation of 60 meters. We modeled dynamic topography by using mantle convection simulations that predict the amplitude and broad spatial distribution of this distortion. The results imply that dynamic topography and, to a lesser extent, glacial isostatic adjustment account for the current architecture of the coastal plain and proximal shelf. This confounds attempts to use regional stratigraphic relations as references for longer-term sea-level determinations. Inferences of Pliocene global sea-level heights or stability of Antarctic ice sheets therefore cannot be deciphered in the absence of an appropriate mantle dynamic reference frame.