RESUMO
The discoveries of at least eight human diseases arising from mutations in LMNA, which encodes the nuclear A-type lamins, have revealed the nuclear envelope as an organelle associated with a variety of fundamental cellular processes. The most recently discovered diseases associated with LMNA mutations are the premature aging disorders Hutchinson-Gilford progeria syndrome (HGPS) and atypical Werner's syndrome. The phenotypes of both HGPS patients and a mouse model of progeria suggest diverse compromised tissue functions leading to defects reminiscent of aging. Aspects of the diseases associated with disrupted nuclear envelope/lamin functions may be explained by decreased cellular proliferation, loss of tissue repair capability and a decline in the ability to maintain a differentiated state.
Assuntos
Núcleo Celular/metabolismo , Laminas/metabolismo , Progéria/metabolismo , Síndrome de Werner/metabolismo , Animais , Senescência Celular/fisiologia , Humanos , Membrana Nuclear/metabolismo , Progéria/patologia , Síndrome de Werner/patologiaRESUMO
The segmental premature aging disease Hutchinson-Gilford Progeria (HGPS) is caused by a truncated and farnesylated form of Lamin A. In a mouse model for HGPS, a similar Lamin A variant causes the proliferative arrest and death of postnatal, but not embryonic, fibroblasts. Arrest is due to an inability to produce a functional extracellular matrix (ECM), because growth on normal ECM rescues proliferation. The defects are associated with inhibition of canonical Wnt signaling, due to reduced nuclear localization and transcriptional activity of Lef1, but not Tcf4, in both mouse and human progeric cells. Defective Wnt signaling, affecting ECM synthesis, may be critical to the etiology of HGPS because mice exhibit skeletal defects and apoptosis in major blood vessels proximal to the heart. These results establish a functional link between the nuclear envelope/lamina and the cell surface/ECM and may provide insights into the role of Wnt signaling and the ECM in aging.
Assuntos
Matriz Extracelular/metabolismo , Lâmina Nuclear/metabolismo , Progéria/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Xenopus laevis/embriologia , Animais , Apoptose , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Imunoprecipitação da Cromatina , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Ensaio de Imunoadsorção Enzimática , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Lamina Tipo A/fisiologia , Luciferases/metabolismo , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Progéria/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SíndromeRESUMO
The nuclear lamina is an approximately 10 nm thick proteinaceous layer underlying the inner nuclear membrane. The A-type lamins, nuclear intermediate filament proteins encoded by the LMNA gene, are basic components of the nuclear lamina. Mutations in LMNA are associated with the laminopathies, congenital diseases affecting tissue regeneration and homeostasis. One of these laminopathies associated with missense mutations in LMNA is dilated cardiomyopathy with conduction system disease (DCM-CD1). To understand how the laminopathies arise from different mutations in a single gene, we derived a mouse line by homologous recombination expressing the Lmna-N195K variant of the A-type lamins with an asparagine-to-lysine substitution at amino acid 195, which causes DCM in humans. This mouse line shows characteristics consistent with DCM-CD1. Continuous electrocardiographic monitoring of cardiac activity demonstrated that LmnaN195K/N195K mice die at an early age due to arrhythmia. By immunofluorescence and western analysis, the transcription factor Hf1b/Sp4 and the gap junction proteins connexin 40 and connexin 43 were misexpressed and/or mislocalized in LmnaN195K/N195K hearts. Desmin staining revealed a loss of organization at sarcomeres and intercalated disks. Mutations within the LMNA gene may therefore cause cardiomyopathy by disrupting the internal organization of the cardiomyocyte and/or altering the expression of transcription factors essential to normal cardiac development, aging or function.
Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/mortalidade , Lamina Tipo A/genética , Mutação Puntual , Sequência de Aminoácidos , Animais , Sequência de Bases , Cardiomiopatia Dilatada/patologia , Conexinas/metabolismo , Desmina/metabolismo , Modelos Animais de Doenças , Feminino , Lamina Tipo A/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Miocárdio/metabolismo , Miocárdio/patologia , Tamanho do Órgão , Fatores de Transcrição/metabolismoRESUMO
Numerous studies of the underlying causes of ageing have been attempted by examining diseases associated with premature ageing, such as Werner's syndrome and Hutchinson-Gilford progeria syndrome (HGPS). HGPS is a rare genetic disorder resulting in phenotypes suggestive of accelerated ageing, including shortened stature, craniofacial disproportion, very thin skin, alopecia and osteoporosis, with death in the early teens predominantly due to atherosclerosis. However, recent reports suggest that developmental abnormalities may also be important in HGPS. Here we describe the derivation of mice carrying an autosomal recessive mutation in the lamin A gene (Lmna) encoding A-type lamins, major components of the nuclear lamina. Homozygous mice display defects consistent with HGPS, including a marked reduction in growth rate and death by 4 weeks of age. Pathologies in bone, muscle and skin are also consistent with progeria. The Lmna mutation resulted in nuclear morphology defects and decreased lifespan of homozygous fibroblasts, suggesting premature cell death. Here we present a mouse model for progeria that may elucidate mechanisms of ageing and development in certain tissue types, especially those developing from the mesenchymal cell lineage.