Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cancer Cell Int ; 23(1): 271, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951913

RESUMO

Recent developments in sequencing technology and analytical approaches have allowed researchers to show that the healthy gut microbiome is very varied and capable of performing a wide range of tasks. The importance of gut microbiota in controlling immunological, neurological, and endocrine function is becoming well-recognized. Thereby, numerous inflammatory diseases, including those that impact the gastrointestinal system, as well as less obvious ones, including Rheumatoid arthritis (RA), cancer, gestational diabetes (GD), type 1 diabetes (T1D), and type 2 diabetes (T2D), have been linked to dysbiotic gut microbiota. Microbiome engineering is a rapidly evolving frontier for solutions to improve human health. Microbiome engineering seeks to improve the function of an ecosystem by manipulating the composition of microbes. Thereby, generating potential therapies against metabolic, inflammatory, and immunological diseases will be possible through microbiome engineering. This essay first provides an overview of the traditional technological instruments that might be used for microbiome engineering, such as Fecal Microbiota Transplantation (FMT), prebiotics, and probiotics. Moreover, we will also discuss experimental genetic methods such as Metagenomic Alteration of Gut microbiome by In situ Conjugation (MAGIC), Bacteriophage, and Conjugative plasmids in manipulating intestinal microbiota.

2.
Diabetes Res Clin Pract ; 202: 110804, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37369279

RESUMO

Diabetes mellitus (DM) and its significant ramifications make out one of the primary reasons behind morbidity worldwide. Noncoding RNAs (ncRNAs), such as microRNAs and long noncoding RNAs, are involved in regulating manifold biological processes, including diabetes initiation and progression. One of the established pathways attributed to DM development is NF-κB signaling. Neurons, ß cells, adipocytes, and hepatocytes are among the metabolic tissues where NF-κB is known to produce a range of inflammatory chemokines and cytokines. The direct or indirect role of ncRNAs such as lncRNAs and miRNAs on the NF-κB signaling pathway and DM development has been supported by many studies. As a result, effective diabetes treatment and preventive methods will benefit from a comprehensive examination of the interplay between NF-κB and ncRNAs. Herein, we provide a concise overview of the role of NF-κB-mediated signaling pathways in diabetes mellitus and its consequences. The reciprocal regulation of ncRNAs and the NF-κB signaling pathway in diabetes is then discussed, shedding light on the pathogenesis of the illness and its possible therapeutic interventions.


Assuntos
Diabetes Mellitus , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Diabetes Mellitus/genética
3.
Cell Signal ; 101: 110504, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309329

RESUMO

Cancer is a general term for more than 100 unique malignancies in different organs of the body. Each cancer type and subtype has its own unique genetic, epigenetic, and cellular factors accountable for malignant progression and metastasis. Small non-coding RNAs called miRNAs target mRNAs and play a vital part in the pathogenesis of human diseases, specifically cancer. Recent investigations provided knowledge of the deregulation of miR-211 in various cancer types and disclosed that miR-211 has an oncogenic or tumor-suppressive impact on tumourigenesis and cancer development. Moreover, recent discoveries which clarify the essential functions of miR-211 might provide proof for its prognosis, diagnostic and therapeutic impact on cancer. Thereby, this review will discuss recent findings regarding miR-211 expression level, target genes, and mechanisms in different cancers. In addition, the most recent results that propose miR-211 usefulness as a noninvasive biomarker and therapeutic factor for the diagnosis and treatment of cancer will be explained.


Assuntos
MicroRNAs , Neoplasias , Humanos , Genes Supressores de Tumor , Neoplasias/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Oncogenes , Carcinogênese/genética
4.
Biomed Pharmacother ; 165: 115054, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37379642

RESUMO

Ecological air contamination is the non-homogenous suspension of insoluble particles into gas or/and liquid fluids known as particulate matter (PM). It has been discovered that exposure to PM can cause serious cellular defects, followed by tissue damage known as cellular stress. Apoptosis is a homeostatic and regulated phenomenon associated with distinguished physiological actions inclusive of organ and tissue generation, aging, and development. Moreover, it has been proposed that the deregulation of apoptotic performs an active role in the occurrence of many disorders, such as autoimmune disease, neurodegenerative, and malignant, in the human population. Recent studies have shown that PMs mainly modulate multiple signaling pathways involved in apoptosis, including MAPK, PI3K/Akt, JAK/STAT, NFκB, Endoplasmic Stress, and ATM/P53, leading to apoptosis dysregulation and apoptosis-related pathological conditions. Here, the recently published data concerning the effect of PM on the apoptosis of various organs, with a particular focus on the importance of apoptosis as a component in PM-induced toxicity and human disease development, is carefully discussed. Moreover, the review also highlighted the various therapeutic approaches, including small molecules, miRNA replacement therapy, vitamins, and PDRN, for treating diseases caused by PM toxicity. Notably, researchers have considered medicinal herbs a potential treatment for PM-induced toxicity due to their fewer side effects. So, in the final section, we analyzed the performance of some natural products for inhibition and intervention of apoptosis arising from PM-induced toxicity.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/efeitos adversos , Poluentes Atmosféricos/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA