RESUMO
The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The syntheses of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles have been achieved from a simple common intermediate. Several ortho- and meta-substituted benzene analogs, as well as simple molecular matched pairs, have also been prepared using this platform. The results of in-depth ADME (absorption, distribution, metabolism, and excretion) investigations of these systems are presented, as well as computational studies which validate the ortho- or meta-character of these bioisosteres.
Assuntos
Hidrocarbonetos Aromáticos/química , Pentanos/química , Bioensaio , Cristalografia por Raios X , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Pentanos/síntese química , EstereoisomerismoRESUMO
Four-membered heterocycles offer exciting potential as small polar motifs in medicinal chemistry but require further methods for incorporation. Photoredox catalysis is a powerful method for the mild generation of alkyl radicals for C-C bond formation. The effect of ring strain on radical reactivity is not well understood, with no studies that address this question systematically. Examples of reactions that involve benzylic radicals are rare, and their reactivity is challenging to harness. This work develops a radical functionalization of benzylic oxetanes and azetidines using visible light photoredox catalysis to prepare 3-aryl-3-alkyl substituted derivatives and assesses the influence of ring strain and heterosubstitution on the reactivity of small-ring radicals. 3-Aryl-3-carboxylic acid oxetanes and azetidines are suitable precursors to tertiary benzylic oxetane/azetidine radicals which undergo conjugate addition into activated alkenes. We compare the reactivity of oxetane radicals to other benzylic systems. Computational studies indicate that Giese additions of unstrained benzylic radicals into acrylates are reversible and result in low yields and radical dimerization. Benzylic radicals as part of a strained ring, however, are less stable and more π-delocalized, decreasing dimer and increasing Giese product formation. Oxetanes show high product yields due to ring strain and Bent's rule rendering the Giese addition irreversible.
RESUMO
Bicyclo[1.1.1]pentylamines (BCPAs) are of growing importance to the pharmaceutical industry as sp3-rich bioisosteres of anilines and N-tert-butyl groups. Here we report a facile synthesis of 1,3-disubstituted BCPAs using a twofold radical functionalization strategy. Sulfonamidyl radicals, generated through fragmentation of α-iodoaziridines, undergo initial addition to [1.1.1]propellane to afford iodo-BCPAs; the newly formed C-I bond in these products is then functionalized via a silyl-mediated Giese reaction. This chemistry also translates smoothly to 1,3-disubstituted iodo-BCPs. A wide variety of radical acceptors and iodo-BCPAs are accommodated, providing straightforward access to an array of valuable aniline-like isosteres.
RESUMO
1,3-Disubstituted bicyclo[1.1.1]pentanes (BCPs) are important motifs in drug design as surrogates for p-substituted arenes and alkynes. Access to all-carbon disubstituted BCPs via cross-coupling has to date been limited to use of the BCP as the organometallic component, which restricts scope due to the harsh conditions typically required for the synthesis of metallated BCPs. Here we report a general method to access 1,3-C-disubstituted BCPs from 1-iodo-bicyclo[1.1.1]pentanes (iodo-BCPs) by direct iron-catalyzed cross-coupling with aryl and heteroaryl Grignard reagents. This chemistry represents the first general use of iodo-BCPs as electrophiles in cross-coupling, and the first Kumada coupling of tertiary iodides. Benefiting from short reaction times, mild conditions, and broad scope of the coupling partners, it enables the synthesis of a wide range of 1,3-C-disubstituted BCPs including various drug analogues.
RESUMO
Historically accessed through two-electron, anionic chemistry, ketones, alcohols, and amines are of foundational importance to the practice of organic synthesis. After placing this work in proper historical context, this Article reports the development, full scope, and a mechanistic picture for a strikingly different way of forging such functional groups. Thus, carboxylic acids, once converted to redox-active esters (RAEs), can be utilized as formally nucleophilic coupling partners with other carboxylic derivatives (to produce ketones), imines (to produce benzylic amines), or aldehydes (to produce alcohols). The reactions are uniformly mild, operationally simple, and, in the case of ketone synthesis, broad in scope (including several applications to the simplification of synthetic problems and to parallel synthesis). Finally, an extensive mechanistic study of the ketone synthesis is performed to trace the elementary steps of the catalytic cycle and provide the end-user with a clear and understandable rationale for the selectivity, role of additives, and underlying driving forces involved.
Assuntos
Álcoois/química , Álcoois/síntese química , Aminas/química , Aminas/síntese química , Cetonas/química , Cetonas/síntese química , Técnicas de Química Sintética , Radicais Livres/químicaRESUMO
New small-ring derivatives can provide valuable motifs in new chemical space for drug design. 3-Aryl-3-sulfanyl azetidines are synthesized directly from azetidine-3-ols in excellent yield by a mild Fe-catalyzed thiol alkylation. A broad range of thiols and azetidinols bearing electron-donating aromatics are successful, proceeding via an azetidine carbocation. The N-carboxybenzyl group is a requirement for good reactivity and enables the NH-azetidine to be revealed. Further reactions of the azetidine sulfides demonstrate their potential for incorporation in drug discovery programs.
RESUMO
3-Sulfanyl-oxetanes are presented as promising novel bioisosteric replacements for thioesters or benzyl sulfides. From oxetan-3-ols, a mild and inexpensive Li catalyst enables chemoselective C-OH activation and thiol alkylation. Oxetane sulfides are formed from various thiols providing novel motifs in new chemical space and specifically as bioisosteres for thioesters due to their similar shape and electronic properties. Under the same conditions, various π-activated secondary and tertiary alcohols are also successful. Derivatization of the oxetane sulfide linker provides further novel oxetane classes and building blocks. Comparisons of key physicochemical properties of the oxetane compounds to selected carbonyl and methylene analogues indicate that these motifs are suitable for incorporation into drug discovery efforts.
Assuntos
Álcoois/química , Compostos de Sulfidrila/química , Alquilação , Cisteína/análogos & derivados , Cisteína/síntese química , Cisteína/química , Compostos de Sulfidrila/síntese química , Sulfetos/síntese química , Sulfetos/química , Sulfonas/síntese química , Sulfonas/químicaRESUMO
The direct union of primary, secondary, and tertiary carboxylic acids with a chiral glyoxylate-derived sulfinimine provides rapid access into a variety of enantiomerically pure α-amino acids (>85 examples). Characterized by operational simplicity, this radical-based reaction enables the modular assembly of exotic α-amino acids, including both unprecedented structures and those of established industrial value. The described method performs well in high-throughput library synthesis, and has already been implemented in three distinct medicinal chemistry campaigns.
Assuntos
Aminoácidos/síntese química , Radicais Livres/química , EstereoisomerismoRESUMO
Driven by the ever-increasing pace of drug discovery and the need to push the boundaries of unexplored chemical space, medicinal chemists are routinely turning to unusual strained bioisosteres such as bicyclo[1.1.1]pentane, azetidine, and cyclobutane to modify their lead compounds. Too often, however, the difficulty of installing these fragments surpasses the challenges posed even by the construction of the parent drug scaffold. This full account describes the development and application of a general strategy where spring-loaded, strained C-C and C-N bonds react with amines to allow for the "any-stage" installation of small, strained ring systems. In addition to the functionalization of small building blocks and late-stage intermediates, the methodology has been applied to bioconjugation and peptide labeling. For the first time, the stereospecific strain-release "cyclopentylation" of amines, alcohols, thiols, carboxylic acids, and other heteroatoms is introduced. This report describes the development, synthesis, scope of reaction, bioconjugation, and synthetic comparisons of four new chiral "cyclopentylation" reagents.
Assuntos
Álcoois/química , Aminas/química , Ácidos Carboxílicos/química , Compostos de Sulfidrila/química , Álcoois/síntese química , Aminas/síntese química , Ácidos Carboxílicos/síntese química , Estrutura Molecular , Estereoisomerismo , Compostos de Sulfidrila/síntese químicaRESUMO
The first examples of 3,3-diaryloxetanes are prepared in a lithium-catalyzed and substrate dependent divergent Friedel-Crafts reaction. para-Selective Friedel-Crafts reactions of phenols using oxetan-3-ols afford 3,3-diaryloxetanes by displacement of the hydroxy group. These constitute new isosteres for benzophenones and diarylmethanes. Conversely, ortho-selective Friedel-Crafts reactions of phenols afford 3-aryl-3-hydroxymethyl-dihydrobenzofurans by tandem alkylation-ring-opening reactions; the outcome of the reaction diverging to structurally distinct products dependent on the substrate regioselectivity. Further reactivity of the oxetane products is demonstrated, suitable for incorporation into drug discovery efforts.
RESUMO
The possibility of finding novel disconnections for the efficient synthesis of organic molecules has driven the interest in developing technologies to directly functionalize C-H bonds. The ubiquity of these bonds makes such transformations attractive, while also posing several challenges. The first, and perhaps most important, is the selective functionalization of one C-H bond over another. Another key problem is inducing reactivity at sites that have been historically unreactive and difficult to access without prior inefficient prefunctionalization. Although remarkable advances have been made over the past decade toward solving these and other problems, several difficult tasks remain as researchers attempt to bring C-H functionalization reactions into common use. The functionalization of sp(3) centers continues to be challenging relative to their sp and sp(2) counterparts. Directing groups are often needed to increase the effective concentration of the catalyst at the targeted reaction site, forming thermodynamically stable coordination complexes. As such, the development of removable or convertible directing groups is desirable. Finally, the replacement of expensive rare earth reagents with less expensive and more sustainable catalysts or abandoning the use of catalysts entirely is essential for future practicality. This Account describes our efforts toward solving some of these quandaries. We began our work in this area with the direct arylation of N-iminopyridinium ylides as a universal means to derivatize the germane six-membered heterocycle. We found that the Lewis basic benzoyl group of the pyridinium ylide could direct a palladium catalyst toward insertion at the 2-position of the pyridinium ring, forming a thermodynamically stable six-membered metallocycle. Subsequently we discovered the arylation of the benzylic site of 2-picolonium ylides. The same N-benzoyl group could direct a number of inexpensive copper salts to the 2-position of the pyridinium ylide, which led to the first description of a direct copper-catalyzed alkenylation onto an electron-deficient arene. This particular directing group offers two advantages: (1) it can be easily appended and removed to reveal the desired pyridine target, and (2) it can be incorporated in a cascade process in the preparation of pharmacologically relevant 2-pyrazolo[1,5-a]pyridines. This work has solved some of the challenges in the direct arylation of nonheterocyclic arenes, including reversing the reactivity often observed with such transformations. Readily convertible directing groups were applied to facilitate the transformation. We also demonstrated that iron can promote intermolecular arylations effectively and that the omission of any metal still permits intramolecular arylation reactions. Lastly, we recently discovered a nickel-catalyzed intramolecular arylation of sp(3) C-H bonds. Our mechanistic investigations of these processes have elucidated radical pathways, opening new avenues in future direct C-H functionalization reactions.
Assuntos
Cobre/química , Ferro/química , Níquel/química , Paládio/química , Anabasina/síntese química , Anabasina/química , Catálise , Compostos Heterocíclicos/químicaRESUMO
Bridged bicycloalkanes such as bicyclo[1.1.1]pentanes (BCPs) and bicyclo[3.1.1]heptanes (BCHeps) are important motifs in contemporary drug design due to their potential to act as bioisosteres of disubstituted benzene rings, often resulting in compounds with improved physicochemical and pharmacokinetic properties. Access to such motifs with proximal nitrogen atoms (i.e. α-amino/amido bicycloalkanes) is highly desirable for drug discovery applications, but their synthesis is challenging. Here we report an approach to α-amino BCPs and BCHeps through the visible-light enabled addition of α-amino radicals to the interbridgehead C-C bonds of [1.1.1] and [3.1.1]propellane respectively. The reaction proceeds under exceptionally mild conditions and displays broad substrate scope, providing access to an array of medicinally-relevant BCP and BCHep products. Experimental and computational mechanistic studies provide evidence for a radical chain pathway which depends critically on the stability of the α-amino radical, as well as effective catalyst turnover.
RESUMO
Peptidyl arginine deiminases (PADs) are important enzymes in many diseases, especially those involving inflammation and autoimmunity. Despite many years of effort, developing isoform-specific inhibitors has been a challenge. We describe herein the discovery of a potent, noncovalent PAD2 inhibitor, with selectivity over PAD3 and PAD4, from a DNA-encoded library. The biochemical and biophysical characterization of this inhibitor and two noninhibitory binders indicated a novel, Ca2+ competitive mechanism of inhibition. This was confirmed via X-ray crystallographic analysis. Finally, we demonstrate that this inhibitor selectively inhibits PAD2 in a cellular context.
Assuntos
Inibidores Enzimáticos , Proteína-Arginina Desiminase do Tipo 2 , Humanos , Regulação Alostérica/efeitos dos fármacos , Cristalografia por Raios X , Proteína-Arginina Desiminase do Tipo 2/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Descoberta de Drogas , Cálcio/metabolismoRESUMO
We describe a protein proximity inducing therapeutic modality called Regulated Induced Proximity Targeting Chimeras or RIPTACs: heterobifunctional small molecules that elicit a stable ternary complex between a target protein (TP) selectively expressed in tumor cells and a pan-expressed protein essential for cell survival. The resulting co-operative protein-protein interaction (PPI) abrogates the function of the essential protein, thus leading to death selectively in cells expressing the TP. This approach leverages differentially expressed intracellular proteins as novel cancer targets, with the advantage of not requiring the target to be a disease driver. In this chemical biology study, we design RIPTACs that incorporate a ligand against a model TP connected via a linker to effector ligands such as JQ1 (BRD4) or BI2536 (PLK1) or CDK inhibitors such as TMX3013 or dinaciclib. RIPTACs accumulate selectively in cells expressing the HaloTag-FKBP target, form co-operative intracellular ternary complexes, and induce an anti-proliferative response in target-expressing cells.
Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Bibliotecas de Moléculas Pequenas , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Proliferação de Células/efeitos dos fármacos , Triazóis/química , Triazóis/farmacologia , Quinase 1 Polo-Like , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Azepinas/farmacologia , Azepinas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Indolizinas/química , Indolizinas/farmacologia , Linhagem Celular Tumoral , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Ligantes , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos com 2 Anéis/síntese química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas que Contêm Bromodomínio , Óxidos N-Cíclicos , Compostos de PiridínioRESUMO
The CC chemokine receptor 6 (CCR6) is a potential target for chronic inflammatory diseases. Previously, we reported an active CCR6 structure in complex with its cognate chemokine CCL20, revealing the molecular basis of CCR6 activation. Here, we present two inactive CCR6 structures in ternary complexes with different allosteric antagonists, CCR6/SQA1/OXM1 and CCR6/SQA1/OXM2. The oxomorpholine analogues, OXM1 and OXM2 are highly selective CCR6 antagonists which bind to an extracellular pocket and disrupt the receptor activation network. An energetically favoured U-shaped conformation in solution that resembles the bound form is observed for the active analogues. SQA1 is a squaramide derivative with close-in analogues reported as antagonists of chemokine receptors including CCR6. SQA1 binds to an intracellular pocket which overlaps with the G protein site, stabilizing a closed pocket that is a hallmark of inactive GPCRs. Minimal communication between the two allosteric pockets is observed, in contrast to the prevalent allosteric cooperativity model of GPCRs. This work highlights the versatility of GPCR antagonism by small molecules, complementing previous knowledge of CCR6 activation, and sheds light on drug discovery targeting CCR6.
Assuntos
Receptores CCR6 , Receptores CCR6/metabolismo , Receptores CCR6/química , Humanos , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Cristalografia por Raios XRESUMO
Ladder polyether natural products are a class of natural products denoted by their high functional-group density and large number of well-defined stereocenters. They comprise the toxic component of harmful algal blooms (HABs), having significant negative economic and environmental ramifications. However, their mode of action, namely blocking various cellular ion channels, also denotes their promise as potential anticancer agents. Understanding their potential mode of biosynthesis will not only help with developing ways to limit the damage of HABs, but would also facilitate the synthesis of a range of analogs with interesting biological activity. 1,3-Dioxan-5-ol substrates display remarkable 'enhanced template effects' in water-promoted epoxide cyclization processes en route to the synthesis of these ladder polyether natural products. In many cases, they provide near complete endo-to-exo selectivity in the cyclization of epoxy alcohols, thereby strongly favoring the formation of tetrahydropyran (THP) over tetrahydrofuran (THF) rings. The effects of various Brønsted and Lewis acidic and basic conditions are explored to demonstrate the superior selectivity of the template over the previously reported THP-based epoxy alcohols. In addition, the consideration of other synthetic routes are also considered with the goal of gaining rapid access to a plethora of potential starting materials applicable towards the synthesis of ladder polyethers. Finally, cascade sequences with polyepoxides are investigated, further demonstrating the versatility of this new reaction template.
Assuntos
Álcoois/química , Produtos Biológicos/química , Dioxanos/química , Compostos de Epóxi/química , Produtos Biológicos/síntese química , Ciclização , Compostos de Epóxi/síntese química , Furanos/síntese química , Furanos/química , Humanos , Piranos/síntese química , Piranos/química , Estereoisomerismo , Água/químicaRESUMO
Lufotrelvir was designed as a first in class 3CL protease inhibitor to treat COVID-19. Development of lufotrelvir was challenged by its relatively poor stability due to its propensity to epimerize and degrade. Key elements of process development included improvement of the supply routes to the indole and lactam fragments, a Claisen addition to homologate the lactam, and a subsequent phosphorylation reaction to prepare the prodrug as well as identification of a DMSO solvated form of lufotrelvir to enable long-term storage. As a new approach to preparing the indole fragment, a Cu-catalyzed C-O coupling using oxalamide ligands was demonstrated. The control of process-related impurities was essential to accommodate the parenteral formulation. Isolation of an MEK solvate followed by the DMSO solvate ensured that all impurities were controlled appropriately.
RESUMO
While specific cell signaling pathway inhibitors have yielded great success in oncology, directly triggering cancer cell death is one of the great drug discovery challenges facing biomedical research in the era of precision oncology. Attempts to eradicate cancer cells expressing unique target proteins, such as antibody-drug conjugates (ADCs), T-cell engaging therapies, and radiopharmaceuticals have been successful in the clinic, but they are limited by the number of targets given the inability to target intracellular proteins. More recently, heterobifunctional small molecules such as Proteolysis Targeting Chimera (PROTACs) have paved the way for protein proximity inducing therapeutic modalities. Here, we describe a proof-of-concept study using novel heterobifunctional small molecules called Regulated Induced Proximity Targeting Chimeras or RIPTACs, which elicit a stable ternary complex between a target protein selectively expressed in cancer tissue and a pan-expressed protein essential for cell survival. The resulting cooperative protein:protein interaction (PPI) abrogates the function of the essential protein, thus leading to cell death selectively in cells expressing the target protein. This approach not only opens new target space by leveraging differentially expressed intracellular proteins but also has the advantage of not requiring the target to be a driver of disease. Thus, RIPTACs can address non-target mechanisms of resistance given that cell killing is driven by inactivation of the essential protein. Using the HaloTag7-FKBP model system as a target protein, we describe RIPTACs that incorporate a covalent or non-covalent target ligand connected via a linker to effector ligands such as JQ1 (BRD4), BI2536 (PLK1), or multi-CDK inhibitors such as TMX3013 or dinaciclib. We show that these RIPTACs exhibit positive co-operativity, accumulate selectively in cells expressing HaloTag7-FKBP, form stable target:RIPTAC:effector trimers in cells, and induce an anti-proliferative response in target-expressing cells. We propose that RIPTACs are a novel heterobifunctional therapeutic modality to treat cancers that are known to selectively express a specific intracellular protein.
RESUMO
Bioisosteres provide valuable design elements that medicinal chemists can use to adjust the structural and pharmacokinetic characteristics of bioactive compounds towards viable drug candidates. Aryl oxetane amines offer exciting potential as bioisosteres for benzamides-extremely common pharmacophores-but are rarely examined due to the lack of available synthetic methods. Here we describe a class of reactions for sulfonyl fluorides to form amino-oxetanes by an alternative pathway to the established SuFEx (sulfonyl-fluoride exchange) click reactivity. A defluorosulfonylation forms planar oxetane carbocations simply on warming. This disconnection, comparable to a typical amidation, will allow the application of vast existing amine libraries. The reaction is tolerant to a wide range of polar functionalities and is suitable for array formats. Ten oxetane analogues of bioactive benzamides and marketed drugs are prepared. Kinetic and computational studies support the formation of an oxetane carbocation as the rate-determining step, followed by a chemoselective nucleophile coupling step.
RESUMO
Annulations that combine diacceptors with bis-nucleophiles are uncommon. Here, we report the synthesis of 1,4-dioxanes from 3-aryloxetan-3-ols, as 1,2-bis-electrophiles and 1,2-diols. Brønsted acid Tf2NH catalyzes both the selective activation of the oxetanol, to form an oxetane carbocation that reacts with the diol, and intramolecular ring opening of the oxetane. High regio- and diastereoselectivity are achieved with unsymmetrical diols. The substituted dioxanes and fused bicyclic products present interesting motifs for drug discovery and can be further functionalized.