Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38396603

RESUMO

Proteinaceous toxins are peptides or proteins that hold great biotechnological value, evidenced by their ecological role, whether as defense or predation mechanisms. Bioprospecting using bioinformatics and omics may render screening for novel bioactives more expeditious, especially considering the immense diversity of toxin-secreting marine organisms. Eulalia sp. (Annelida: Phyllodocidae), a toxin bearing marine annelid, was recently shown to secrete cysteine-rich protein (Crisp) toxins (hitherto referred to as 'phyllotoxins') that can immobilize its prey. By analyzing and validating transcriptomic data, we narrowed the list of isolated full coding sequences of transcripts of the most abundant toxins or accompanying bioactives secreted by the species (the phyllotoxin Crisp, hyaluronidase, serine protease, and peptidases M12A, M13, and M12B). Through homology matching with human proteins, the biotechnological potential of the marine annelid's toxins and related proteins was tentatively associated with coagulative and anti-inflammatory responses for the peptidases PepM12A, SePr, PepM12B, and PepM13, and with the neurotoxic activity of Crisp, and finally, hyaluronidase was inferred to bear properties of an permeabilizing agent. The in silico analysis succeeded by validation by PCR and Sanger sequencing enabled us to retrieve cDNAs can may be used for the heterologous expression of these toxins.

2.
Animals (Basel) ; 14(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540078

RESUMO

The current study investigates the venom-delivery system of green and red morphotypes of the sea anemone Actinia equina to disclose its potential as a source of bioactive compounds. We compared the two morphotypes using electron and optical microscopy, proteomics, and toxicity assessment on zebrafish embryos. Specialized venom-injecting cells (nematocysts) are equally distributed and found in the tentacles of both varieties. Proteomics revealed proteins of interest in both red and green Actinia, yielding the three most abundant Gene Ontology (GO) terms related to the biological processes "proteolysis", "hemolysis in another organism" and "lipid catabolic process". Neurotoxins and cytolytic toxins similar to known cnidarian toxins like PsTX-60A and AvTX-60A, for instance, were identified in both types. Extracts from green and red anemones were toxic to zebrafish embryos, with green anemone venom appearing to be more potent. The findings highlight the presence of proteinaceous toxins in A. equina and the potential for different varieties to possess distinct bioactive compounds. Notably, pore-forming toxins are suggested for molecular probes and immunotoxins, making them valuable assets for potential biotechnological and biomedical purposes.

3.
Toxins (Basel) ; 15(11)2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37999518

RESUMO

The immense biodiversity of marine invertebrates makes them high-value targets for the prospecting of novel bioactives. The present study investigated proteinaceous toxins secreted by the skin and proboscis of Glycera alba (Annelida: Polychaeta), whose congenerics G. tridactyla and G. dibranchiata are known to be venomous. Proteomics and bioinformatics enabled the detection of bioactive proteins that hold potential for biotechnological applications, including toxins like glycerotoxins (GLTx), which can interfere with neuromuscular calcium channels and therefore have value for the development of painkillers, for instance. We also identified proteins involved in the biosynthesis of toxins. Other proteins of interest include venom and toxin-related bioactives like cysteine-rich venom proteins, many of which are known to interfere with the nervous system. Ex vivo toxicity assays with mussel gills exposed to fractionated protein extracts from the skin and proboscis revealed that fractions potentially containing higher-molecular-mass venom proteins can exert negative effects on invertebrate prey. Histopathology, DNA damage and caspase-3 activity suggest significant cytotoxic effects that can be coadjuvated by permeabilizing enzymes such as venom metalloproteinases M12B. Altogether, these encouraging findings show that venomous annelids are important sources of novel bioactives, albeit illustrating the challenges of surveying organisms whose genomes and metabolisms are poorly understood.


Assuntos
Anelídeos , Poliquetos , Toxinas Biológicas , Animais , Anelídeos/genética , Invertebrados , Organismos Aquáticos
4.
Mol Omics ; 18(8): 731-744, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35792046

RESUMO

Most animal toxins evolved to interact with specific molecular targets, which makes them highly-prized bioactives for drug development. Marine toxins, in particular, due to their wide chemical diversity, offer a new range of possibilities, a few of which have already been translated into approved drugs. Glycera alba and Hediste diversicolor are sympatric Polychaeta with distinct ecology and behavior suspected to secrete toxins that evolved to interact with distinct molecular targets, thus with differential selectivity and potential applications in drug discovery. Comparative transcriptomics revealed that while G. alba's venom apparatus is localized in the proboscis and neurotoxins are secreted to overtake prey, H. diversicolor secretes fewer and less specific toxins that are seemingly a defense. Human interactome-directed analysis unraveled novel toxins and other bioactives with potential biomedical applications, like proteins from G. alba's venom that can regulate apoptosis, whereas H. diversicolor yielded proteins that may control inflammation and cell proliferation in humans. Omics and bioinformatics appear to be powerful tools for marine bioprospecting and drug discovery, enabling molecular mining through transcriptomes of non-model organisms and link their ecology and physiology with protein's specificity and bioreactivity. Interactome-directed analysis against the human proteome seems an efficient alternative to the design of synthetic drugs.


Assuntos
Poliquetos , Medicamentos Sintéticos , Animais , Descoberta de Drogas , Humanos , Toxinas Marinhas/metabolismo , Poliquetos/genética , Poliquetos/metabolismo , Proteoma/metabolismo , Medicamentos Sintéticos/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA