Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sleep Breath ; 20(2): 575-81, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26338464

RESUMO

PURPOSE: Restrictive respiratory failure is a major cause of morbidity and mortality in neuromuscular diseases (NMD). Home mechanical ventilation (HMV) is used to treat hypoventilation, identified by daytime hypercapnia or nocturnal desaturation. Recently, transcutaneous measure of CO2 (TcCO2) has been increasingly used to detect hypoventilation, using different cut-offs. We aimed to compare the prevalence of hypoventilation in an unselected adult NMD population according to different definitions issued from the literature. METHODS: All consecutive nocturnal capno-oximetries performed between 2010 and 2014 in unventilated adult NMD patients were analysed retrospectively. Concomitant blood gas analysis and lung function data were collected. Patients on oxygen therapy were excluded. Hypoventilation was defined according to eight criteria, based on daytime PaCO2, daytime base excess, nocturnal SpO2 or TcCO2. RESULTS: Data from 232 patients were analysed (mean age 43.1 ± 15.4 years; 50.0 % women; vital capacity 59.2 ± 24.2 % of predicted). The hypoventilation prevalence was 10.3 to 61.2 %, depending on the used definition. The different definitions showed 49.1 to 94.8 % concordance (Cohen's kappa for agreement 0.115 to 0.763). Overall agreement between the eight definitions was poor (Light's kappa 0.267), and agreement between definitions based on nocturnal SpO2 and those based on TcCO2 was even lower (Light's kappa 0.204). CONCLUSIONS: We found large differences in hypoventilation prevalence according to the used definition. This has practical consequences, as HMV indication relies upon hypoventilation detection. We believe that capno-oximetry should be included in the diagnostic tools used to detect hypoventilation but this requires an update of consensus guidelines to agree upon the best definition.


Assuntos
Hipoventilação/epidemiologia , Doenças Neuromusculares/epidemiologia , Equilíbrio Ácido-Base/fisiologia , Adulto , Monitorização Transcutânea dos Gases Sanguíneos , Ritmo Circadiano/fisiologia , Estudos Transversais , Feminino , Humanos , Hipoventilação/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doenças Neuromusculares/fisiopatologia , Oximetria , Insuficiência Respiratória/epidemiologia , Insuficiência Respiratória/fisiopatologia , Estudos Retrospectivos
2.
Respir Med ; 103(2): 173-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18993044

RESUMO

Air leaks often result in alveolar hypoventilation in mechanically ventilated patients with neuromuscular disease. The primary objective of this study was to assess the feasibility, efficacy and tolerance of a ventilator equipped with an automated air-leak compensation system in a clinical situation. Fourteen neuromuscular patients with nocturnal air leaks during home ventilation were included in a prospective randomised crossover study. A modified VS Ultra ventilator was studied during two consecutive nights and patients were randomly ventilated with and without a leak-compensation system, respectively. Tolerance, minute ventilation, blood gas values, sleep parameters, and nocturnal oxygen saturation were assessed. Leak compensation significantly increased the mean inspiratory and expiratory tidal volumes (731+/-312 vs. 1094+/-432 ml [p=0.002] and 329+/-130 vs. 496+/-388 ml [p=0.006], respectively) and inspiratory and expiratory flows (51.7+/-8.2 vs. 61.8+/-12.4 l/min [p=0.016] and 63.3+/-26.2 vs. 83.3+/-37.8 l/min [p=0.013], respectively). The system acted by increasing both inspiratory time (from 1355+/-230 to 1527+/-159 ms, p=0.038) and inspiratory pressure (from 14.0+/-2.8 to 18.3+/-3.4 cm H(2)O, p=0.002). Leak compensation improved arterial PCO(2) (6.18+/-0.9 vs. 5.21+/-1.0 kPa, p=0.004), slow-wave-sleep latency (119+/-69 vs. 87+/-35 min, p=0.04), and tolerance. Air-leak compensation is feasible and may produce beneficial effects in neuromuscular patients. The automatic air-leak compensation system tested here should be evaluated in long-term efficacy and tolerance studies and compared to other ventilation modes capable of compensating for leaks, such as pressure support.


Assuntos
Hipoventilação/terapia , Doenças Neuromusculares/terapia , Respiração Artificial/instrumentação , Métodos Epidemiológicos , Feminino , Serviços Hospitalares de Assistência Domiciliar , Humanos , Masculino , Doenças Neuromusculares/fisiopatologia , Polissonografia , Troca Gasosa Pulmonar/fisiologia , Respiração Artificial/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA