Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 1): 132693, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806086

RESUMO

In this study, a novel double-layer slow-release fertilizer (SRF) was developed utilizing stearic acid (SA) as a hydrophobic inner coating and a blend of starch phosphate carbamate (abbreviated as SPC) and polyvinyl alcohol (PVA) as a hydrophilic outer coating (designated as SPCP). The mass ratios of SPC and PVA in the SPCP matrices were systematically optimized by comprehensively checking the water absorbency, water contact angle (WCA), water retention property (WR), and mechanical properties such as percentage elongation at break and tensile strength with FTIR, XRD, EDS, and XPS techniques, etc. Moreover, the optimal SPCP/5:5 demonstrated superior water absorbency with an 80.2 % increase for the total mass compared to natural starch/PVA(NSP), along with desirable water retention capacity in the soil, exhibiting a weight loss of only 48 % over 13 d. Relative to pure urea and SA/NSPU/5:5, SA/SPCPU/5:5 released 50.3 % of its nutrient within 15 h, leading to nearly complete release over 25 h in the aqueous phase, while only 46.6 % of urea was released within 20 d in soil, extending to approximately 30 d. The slow release performance of urea reveals that the diffusion rate of urea release shows a significant decrease with an increase in coating layers. Consequently, this work demonstrated a prospective technology for the exploration of environmentally friendly SRF by integrating biodegradable starch derivatives with other polymers.


Assuntos
Preparações de Ação Retardada , Fertilizantes , Álcool de Polivinil , Amido , Ureia , Água , Amido/química , Álcool de Polivinil/química , Ureia/química , Água/química , Biodegradação Ambiental , Interações Hidrofóbicas e Hidrofílicas , Solo/química
2.
Int J Biol Macromol ; 190: 189-197, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34499949

RESUMO

In this work, a novel starch phosphate carbamate hydrogel (SPC-Hydrogel) and its corresponding urea hydrogel (SPCU-Hydrogel) slow-release fertilizer (SRF) were prepared by one-step free radical copolymerization of SPC and acrylamide (AM) without and with urea addition. A series of characterization measurements including FTIR, XRD, EDS, XPS are utilized to confirm the successful formation of the SPC-Hydrogel. The SEM shows SPC-Hydrogel has a porous three-dimensional network architecture. Furthermore, SPC-Hydrogel matrix exhibits superior water absorbency achieving 80.2 g/g than that (70.5 g/g) of the native starch hydrogel (NS-Hydrogel) and desirable water retention capacity in soil with a weight loss of only 48% for 13 days. Compared with pure urea and NS based urea hydrogel (NSU-Hydrogel), the SPCU-Hydrogel releases 50.3% for 15 h, achieving an almost complete release more than 25 h in aqueous phase. While only 46.6% of urea is released in 20 days which extends about 30 days in soil column assays. The maize seedlings growth assays also present an intuitive evaluation on the prominent soil water holding and plant growth promotion role of SPCU-Hydrogel. In conclusion, the present work has demonstrated a novel strategy via preparing biomass hydrogel SRF to enhance the utilization effectiveness of fertilizer and retain soil humidity.


Assuntos
Carbamatos/química , Hidrogéis/química , Fosfatos/química , Amido/química , Ureia/química , Água/química , Espectroscopia Fotoeletrônica , Plântula/crescimento & desenvolvimento , Solo , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/ultraestrutura , Difração de Raios X , Zea mays/crescimento & desenvolvimento
3.
RSC Adv ; 10(55): 33483-33489, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35515017

RESUMO

Nitrogen/phosphorus-doped carbon dots (N, P-CDs) with a quantum yield as high as 76.5% were synthesized by carbonizing maize starch via a facile ethanol solvothermal approach. Transmission electron microscopy (TEM) measurement shows that the as-prepared N, P-CDs displayed a quasi-spherical shape with a mean size of ca. 2.5 nm. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy disclosed the presence of -OH, -NH2, -COOH, and -CO functional groups over the surface of N, P-CDs. On the basis of excellent fluorescent properties with strong blue fluorescence emission at 445 nm upon excitation at 340 nm, these N, P-CDs were adopted as a fluorescent probe towards the effective detection of Fe3+ ions in water. The limit of detection (LOD) was as low as 0.1 µmol L-1 and showed a better linear relationship in the range of 0.1 ∼ 50 µmol L-1. In conclusion, these synthesized N, P-CDs can be efficiently used as a promising candidate for the detection of Fe3+ ions in some practical samples.

4.
Int J Biol Macromol ; 163: 2448-2456, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987076

RESUMO

The natural starch (NS) is modified by an esterification process which is accomplished by reacting the NS and phosphate together with urea via a facile alcohol solvothermal method. After modification, a series of obvious variations can be easily confirmed for the resulted starch phosphate carbamides (denoted as SPC) compared with that of NS, such as the introduction of new groups of CO, PO, P-O-C and P-O-H together with new elements of N and P in starch molecular structure unit confirmed in FT-IR and XPS analyses and the decreased crystallinity along with formed surface defect demonstrated in XRD and SEM measurements. Furthermore, the formed SPC has a higher viscosity of 480 mPa.s-1 and lower gelatinization temperature of under 10 °C than that of the NS. More importantly, when the SPC is utilized as outer coating material together with ethylcellulose (EC) as inner coating material for preparing double-layer slow-release urea (denoted as EC/SPC based SRU), the EC/SPC based SRU has a desirable slow-release behavior with release percentages of 40.9% for 12 h in water and merely 59.6% for 20 day together with even exceeding 30 days in soil. Conclusively, this work provides a facile preparation approach for the SPC and its creative application for the preparation of SRU.


Assuntos
Álcoois/química , Fosfatos/química , Amido/química , Ureia/química , Esterificação , Fertilizantes , Nitrogênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade/efeitos dos fármacos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA