RESUMO
BACKGROUND: The World Health Organization approved the RTS,S/AS01 malaria vaccine for wider rollout, and Kenya participated in a phased pilot implementation from 2019 to understand its impact under routine conditions. Vaccine delivery requires coverage measures at national and sub-national levels to evaluate progress over time. This study aimed to estimate the coverage of the RTS,S/AS01 vaccine during the first 36 months of the Kenyan pilot implementation. METHODS: Monthly dose-specific immunization data for 23 sub-counties were obtained from routine health information systems at the facility level for 2019-2022. Coverage of each RTS,S/AS01 dose was determined using reported doses as a numerator and service-based (Penta 1 and Measles) or population (projected infant populations from WorldPop) as denominators. Descriptive statistics of vaccine delivery, dropout rates and coverage estimates were computed across the 36-month implementation period. RESULTS: Over 36 months, 818,648 RTSS/AS01 doses were administered. Facilities managed by the Ministry of Health and faith-based organizations accounted for over 88% of all vaccines delivered. Overall, service-based malaria vaccine coverage was 96%, 87%, 78%, and 39% for doses 1-4 respectively. Using a population-derived denominator for age-eligible children, vaccine coverage was 78%, 68%, 57%, and 24% for doses 1-4, respectively. Of the children that received measles dose 1 vaccines delivered at 9 months (coverage: 95%), 82% received RTSS/AS01 dose 3, only 66% of children who received measles dose 2 at 18 months (coverage: 59%) also received dose 4. CONCLUSION: The implementation programme successfully maintained high levels of coverage for the first three doses of RTSS/AS01 among children defined as EPI service users up to 9 months of age but had much lower coverage within the community with up to 1 in 5 children not receiving the vaccine. Consistent with vaccines delivered over the age of 1 year, coverage of the fourth malaria dose was low. Vaccine uptake, service access and dropout rates for malaria vaccines require constant monitoring and intervention to ensure maximum protection is conferred.
Assuntos
Sistemas de Informação em Saúde , Vacinas Antimaláricas , Sarampo , Criança , Lactente , Humanos , Quênia , Transporte BiológicoRESUMO
BACKGROUND: Estimating accessibility gaps to essential health interventions helps to allocate and prioritize health resources. Access to blood transfusion represents an important emergency health requirement. Here, we develop geo-spatial models of accessibility and competition to blood transfusion services in Bungoma County, Western Kenya. METHODS: Hospitals providing blood transfusion services in Bungoma were identified from an up-dated geo-coded facility database. AccessMod was used to define care-seeker's travel times to the nearest blood transfusion service. A spatial accessibility index for each enumeration area (EA) was defined using modelled travel time, population demand, and supply available at the hospital, assuming a uniform risk of emergency occurrence in the county. To identify populations marginalized from transfusion services, the number of people outside 1-h travel time and those residing in EAs with low accessibility indexes were computed at the sub-county level. Competition between the transfusing hospitals was estimated using a spatial competition index which provided a measure of the level of attractiveness of each hospital. To understand whether highly competitive facilities had better capacity for blood transfusion services, a correlation test between the computed competition metric and the blood units received and transfused at the hospital was done. RESULTS: 15 hospitals in Bungoma county provide transfusion services, however these are unevenly distributed across the sub-counties. Average travel time to a blood transfusion centre in the county was 33 min and 5% of the population resided outside 1-h travel time. Based on the accessibility index, 38% of the EAs were classified to have low accessibility, representing 34% of the population, with one sub-county having the highest marginalized population. The computed competition index showed that hospitals in the urban areas had a spatial competitive advantage over those in rural areas. CONCLUSION: The modelled spatial accessibility has provided an improved understanding of health care gaps essential for health planning. Hospital competition has been illustrated to have some degree of influence in provision of health services hence should be considered as a significant external factor impacting the delivery, and re-design of available services.
Assuntos
Transfusão de Sangue , Instalações de Saúde , Acessibilidade aos Serviços de Saúde , Humanos , Serviços de Saúde , Hospitais , Quênia/epidemiologia , Serviço Hospitalar de EmergênciaRESUMO
COVID-19 has impacted the health and livelihoods of billions of people since it emerged in 2019. Vaccination for COVID-19 is a critical intervention that is being rolled out globally to end the pandemic. Understanding the spatial inequalities in vaccination coverage and access to vaccination centres is important for planning this intervention nationally. Here, COVID-19 vaccination data, representing the number of people given at least one dose of vaccine, a list of the approved vaccination sites, population data and ancillary GIS data were used to assess vaccination coverage, using Kenya as an example. Firstly, physical access was modelled using travel time to estimate the proportion of population within 1 hour of a vaccination site. Secondly, a Bayesian conditional autoregressive (CAR) model was used to estimate the COVID-19 vaccination coverage and the same framework used to forecast coverage rates for the first quarter of 2022. Nationally, the average travel time to a designated COVID-19 vaccination site (n = 622) was 75.5 min (Range: 62.9 - 94.5 min) and over 87% of the population >18 years reside within 1 hour to a vaccination site. The COVID-19 vaccination coverage in December 2021 was 16.70% (95% CI: 16.66 - 16.74) - 4.4 million people and was forecasted to be 30.75% (95% CI: 25.04 - 36.96) - 8.1 million people by the end of March 2022. Approximately 21 million adults were still unvaccinated in December 2021 and, in the absence of accelerated vaccine uptake, over 17.2 million adults may not be vaccinated by end March 2022 nationally. Our results highlight geographic inequalities at sub-national level and are important in targeting and improving vaccination coverage in hard-to-reach populations. Similar mapping efforts could help other countries identify and increase vaccination coverage for such populations.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Quênia/epidemiologia , Vacinação , Cobertura VacinalRESUMO
The High Burden High Impact (HBHI) strategy for malaria encourages countries to use multiple sources of available data to define the sub-national vulnerabilities to malaria risk, including parasite prevalence. Here, a modelled estimate of Plasmodium falciparum from an updated assembly of community parasite survey data in Kenya, mainland Tanzania, and Uganda is presented and used to provide a more contemporary understanding of the sub-national malaria prevalence stratification across the sub-region for 2019. Malaria prevalence data from surveys undertaken between January 2010 and June 2020 were assembled form each of the three countries. Bayesian spatiotemporal model-based approaches were used to interpolate space-time data at fine spatial resolution adjusting for population, environmental and ecological covariates across the three countries. A total of 18,940 time-space age-standardised and microscopy-converted surveys were assembled of which 14,170 (74.8%) were identified after 2017. The estimated national population-adjusted posterior mean parasite prevalence was 4.7% (95% Bayesian Credible Interval 2.6-36.9) in Kenya, 10.6% (3.4-39.2) in mainland Tanzania, and 9.5% (4.0-48.3) in Uganda. In 2019, more than 12.7 million people resided in communities where parasite prevalence was predicted ≥ 30%, including 6.4%, 12.1% and 6.3% of Kenya, mainland Tanzania and Uganda populations, respectively. Conversely, areas that supported very low parasite prevalence (<1%) were inhabited by approximately 46.2 million people across the sub-region, or 52.2%, 26.7% and 10.4% of Kenya, mainland Tanzania and Uganda populations, respectively. In conclusion, parasite prevalence represents one of several data metrics for disease stratification at national and sub-national levels. To increase the use of this metric for decision making, there is a need to integrate other data layers on mortality related to malaria, malaria vector composition, insecticide resistance and bionomic, malaria care-seeking behaviour and current levels of unmet need of malaria interventions.