RESUMO
The long-term physiological consequences of respiratory viral infections, particularly in the aftermath of the COVID-19 pandemic-termed post-acute sequelae of SARS-CoV-2 (PASC)-are rapidly evolving into a major public health concern1-3. While the cellular and molecular aetiologies of these sequelae are poorly defined, increasing evidence implicates abnormal immune responses3-6 and/or impaired organ recovery7-9 after infection. However, the precise mechanisms that link these processes in the context of PASC remain unclear. Here, with insights from three cohorts of patients with respiratory PASC, we established a mouse model of post-viral lung disease and identified an aberrant immune-epithelial progenitor niche unique to fibroproliferation in respiratory PASC. Using spatial transcriptomics and imaging, we found a central role for lung-resident CD8+ T cell-macrophage interactions in impairing alveolar regeneration and driving fibrotic sequelae after acute viral pneumonia. Specifically, IFNγ and TNF derived from CD8+ T cells stimulated local macrophages to chronically release IL-1ß, resulting in the long-term maintenance of dysplastic epithelial progenitors and lung fibrosis. Notably, therapeutic neutralization of IFNγ + TNF or IL-1ß markedly improved alveolar regeneration and pulmonary function. In contrast to other approaches, which require early intervention10, we highlight therapeutic strategies to rescue fibrotic disease after the resolution of acute disease, addressing a current unmet need in the clinical management of PASC and post-viral disease.
Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Modelos Animais de Doenças , Pulmão , Macrófagos , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Feminino , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Síndrome de COVID-19 Pós-Aguda , Interleucina-1beta/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Nicho de Células-Tronco , Células-Tronco/virologia , Células-Tronco/imunologia , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Fibrose Pulmonar/virologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/imunologia , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regeneração/imunologia , Alvéolos Pulmonares/virologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologiaRESUMO
BACKGROUND: Infection with rhinovirus (RV) is a major risk factor for disease exacerbations in patients with allergic asthma. This study analysed a broad set of cytokines in the noses of children and adults with asthma during RV infection in order to identify immunophenotypes that may link to virus-induced episodes. METHODS: Nasal wash specimens were analysed in children (n = 279 [healthy, n = 125; stable asthma, n = 64; wheeze, n = 90], ages 2-12) who presented to a hospital emergency department, and in adults (n = 44 [healthy, n = 13; asthma, n = 31], ages 18-38) who were experimentally infected with RV, including a subset who received anti-IgE. Cytokines were measured by multiplex bead assay and data analysed by univariate and multivariate methods to test relationships to viral load, allergic status, airway inflammation, and clinical outcomes. RESULTS: Analysis of a core set of 7 cytokines (IL-6, CXCL8/IL-8, IL-15, EGF, G-CSF, CXCL10/IP-10 and CCL22/MDC) revealed higher levels in children with acute wheeze versus those with stable asthma or controls. Multivariate analysis identified two clusters that were enriched for acutely wheezing children; one displaying high viral load ("RV-high") with robust secretion of CXCL10, and the other displaying high IgE with elevated EGF, CXCL8 and both eosinophil- and neutrophil-derived mediators. Broader assessment of 39 cytokines confirmed that children with acute wheeze were not deficient in type 1 anti-viral responses. Analysis of 18 nasal cytokines in adults with asthma who received RV challenge identified two clusters; one that was "RV-high" and linked to robust induction of anti-viral cytokines and anti-IgE; and the other associated with more severe symptoms and a higher inflammatory state featuring eosinophil and neutrophil factors. CONCLUSIONS: The results confirm the presence of different immunophenotypes linked to parameters of airway disease in both children and adults with asthma who are infected with RV. Such discrepancies may reflect the ability to regulate anti-viral responses.
Assuntos
Asma , Infecções por Enterovirus , Infecções por Picornaviridae , Adolescente , Adulto , Quimiocina CXCL10 , Criança , Pré-Escolar , Análise por Conglomerados , Citocinas , Infecções por Enterovirus/complicações , Fator de Crescimento Epidérmico , Fator Estimulador de Colônias de Granulócitos , Humanos , Interleucina-15 , Interleucina-6 , Interleucina-8 , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/diagnóstico , Sons Respiratórios , Rhinovirus , Adulto JovemRESUMO
OBJECTIVE: Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES: Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS: Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS: Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION: Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Assuntos
Asma , Hipersensibilidade , Humanos , Linfócitos T CD8-Positivos/patologia , Linfócitos T Citotóxicos/patologia , Linfócitos T CD4-Positivos/patologia , Células Th2RESUMO
BACKGROUND: Detailed understanding of the immune response to severe acute respiratory syndrome coronavirus (SARS-CoV)-2, the cause of coronavirus disease 2019 (CO-VID-19) has been hampered by a lack of quantitative antibody assays. OBJECTIVE: The objective was to develop a quantitative assay for IgG to SARS-CoV-2 proteins that could be implemented in clinical and research laboratories. METHODS: The biotin-streptavidin technique was used to conjugate SARS-CoV-2 spike receptor-binding domain (RBD) or nucleocapsid protein to the solid phase of the ImmunoCAP. Plasma and serum samples from patients hospitalized with COVID-19 (n = 60) and samples from donors banked before the emergence of COVID-19 (n = 109) were used in the assay. SARS-CoV-2 IgG levels were followed longitudinally in a subset of samples and were related to total IgG and IgG to reference antigens using an ImmunoCAP 250 platform. RESULTS: At a cutoff of 2.5 µg/mL, the assay demonstrated sensitivity and specificity exceeding 95% for IgG to both SARS-CoV-2 proteins. Among 36 patients evaluated in a post-hospital follow-up clinic, median levels of IgG to spike-RBD and nucleocapsid were 34.7 µg/mL (IQR 18-52) and 24.5 µg/mL (IQR 9-59), respectively. Among 17 patients with longitudinal samples, there was a wide variation in the magnitude of IgG responses, but generally the response to spike-RBD and to nucleocapsid occurred in parallel, with peak levels approaching 100 µg/mL, or 1% of total IgG. CONCLUSIONS: We have described a quantitative assay to measure IgG to SARS-CoV-2 that could be used in clinical and research laboratories and implemented at scale. The assay can easily be adapted to measure IgG to mutated COVID-19 proteins, has good performance characteristics, and has a readout in standardized units.
Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , Imunoglobulina G/sangue , SARS-CoV-2/imunologia , Biomarcadores/sangue , COVID-19/virologia , Humanos , Estudos Longitudinais , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Allergic asthmatic subjects are uniquely susceptible to acute wheezing episodes provoked by rhinovirus. However, the underlying immune mechanisms and interaction between rhinovirus and allergy remain enigmatic, and current paradigms are controversial. OBJECTIVE: We sought to perform a comprehensive analysis of type 1 and type 2 innate and adaptive responses in allergic asthmatic subjects infected with rhinovirus. METHODS: Circulating virus-specific TH1 cells and allergen-specific TH2 cells were precisely monitored before and after rhinovirus challenge in allergic asthmatic subjects (total IgE, 133-4692 IU/mL; n = 28) and healthy nonallergic controls (n = 12) using peptide/MHCII tetramers. T cells were sampled for up to 11 weeks to capture steady-state and postinfection phases. T-cell responses were analyzed in parallel with 18 cytokines in the nose, upper and lower airway symptoms, and lung function. The influence of in vivo IgE blockade was also examined. RESULTS: In uninfected asthmatic subjects, higher numbers of circulating virus-specific PD-1+ TH1 cells, but not allergen-specific TH2 cells, were linked to worse lung function. Rhinovirus infection induced an amplified antiviral TH1 response in asthmatic subjects versus controls, with synchronized allergen-specific TH2 expansion, and production of type 1 and 2 cytokines in the nose. In contrast, TH2 responses were absent in infected asthmatic subjects who had normal lung function, and in those receiving anti-IgE. Across all subjects, early induction of a minimal set of nasal cytokines that discriminated high responders (G-CSF, IFN-γ, TNF-α) correlated with both egress of circulating virus-specific TH1 cells and worse symptoms. CONCLUSIONS: Rhinovirus induces robust TH1 responses in allergic asthmatic subjects that may promote disease, even after the infection resolves.
Assuntos
Asma/imunologia , Hipersensibilidade/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus/fisiologia , Células Th1/imunologia , Células Th2/imunologia , Alérgenos/imunologia , Antígenos Virais/imunologia , Células Cultivadas , Citocinas/metabolismo , Suscetibilidade a Doenças , Humanos , Ativação Linfocitária , Receptor de Morte Celular Programada 1/metabolismo , Sons RespiratóriosRESUMO
Over the past decade, there have been substantial advances in our understanding about how viral infections regulate asthma. Important lessons have been learned from birth cohort studies examining viral infections and subsequent asthma and from understanding the relationships between host genetics and viral infections, the contributions of respiratory viral infections to patterns of immune development, the impact of environmental exposure on the severity of viral infections, and how the viral genome influences host immune responses to viral infections. Further, there has been major progress in our knowledge about how bacteria regulate host immune responses in asthma pathogenesis. In this article, we also examine the dynamics of bacterial colonization of the respiratory tract during viral upper respiratory tract infection, in addition to the relationship of the gut and respiratory microbiomes with respiratory viral infections. Finally, we focus on potential interventions that could decrease virus-induced wheezing and asthma. There are emerging therapeutic options to decrease the severity of wheezing exacerbations caused by respiratory viral infections. Primary prevention is a major goal, and a strategy toward this end is considered.
Assuntos
Asma , Sons Respiratórios , Infecções Respiratórias , Viroses , Animais , Asma/tratamento farmacológico , Asma/genética , Asma/imunologia , Asma/virologia , Progressão da Doença , Microbioma Gastrointestinal , Genoma Viral , Humanos , Prevenção Primária , Sons Respiratórios/genética , Sons Respiratórios/imunologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/genética , Infecções Respiratórias/imunologia , Infecções Respiratórias/prevenção & controle , Viroses/tratamento farmacológico , Viroses/genética , Viroses/imunologia , Viroses/prevenção & controleRESUMO
BACKGROUND: Rhinovirus frequently causes asthma exacerbations among children and young adults who are allergic. The interaction between allergen and rhinovirus-induced symptoms and inflammation over time is unclear. OBJECTIVE: Our aim was to compare the response to an experimental inoculation with rhinovirus-16 in allergic asthmatics with the response in healthy controls and to evaluate the effects of administrating omalizumab before and during the infection. METHODS: Two clinical trials were run in parallel. In one of these trials, the response to an experimental inoculation with rhinovirus-16 among asthmatics with high levels of total IgE was compared to the response in healthy controls. The other trial compared the effects of administering omalizumab versus placebo to asthmatics in a randomized, double-blind placebo-controlled investigation. The primary outcome for both trials compared lower respiratory tract symptoms (LRTSs) between study groups over the first 4 days of infection. RESULTS: Frequent comparisons of symptoms, lung function, and blood eosinophil counts revealed differences that were more pronounced among allergic asthmatics than among controls by days 2 and 3 after virus inoculation. Additionally, an augmentation of upper respiratory tract symptom scores and LRTS scores occurred among the atopic asthmatics versus the controls during the resolution of symptoms (P < .01 for upper respiratory symptom tract scores and P < .001 for LRTS scores). The beneficial effects of administering omalizumab on reducing LRTSs and improving lung function were strongest over the first 4 days. CONCLUSIONS: LRTSs and blood eosinophil counts were augmented and lung function was reduced among allergic asthmatics early after rhinovirus inoculation but increased late in the infection during symptom resolution. The effect of administering omalizumab on the response to rhinovirus was most pronounced during the early/innate phase of the infection.
Assuntos
Antialérgicos/uso terapêutico , Asma/imunologia , Imunoglobulina E/metabolismo , Omalizumab/uso terapêutico , Infecções por Picornaviridae/imunologia , Sistema Respiratório/patologia , Rhinovirus/fisiologia , Adulto , Asma/tratamento farmacológico , Método Duplo-Cego , Feminino , Humanos , Imunoglobulina E/imunologia , Masculino , Infecções por Picornaviridae/tratamento farmacológico , Efeito Placebo , Testes de Função Respiratória , Sistema Respiratório/virologia , Adulto JovemRESUMO
Severe asthma in children is a debilitating condition that accounts for a disproportionately large health and economic burden of asthma. Reasons for the lack of a response to standard anti-inflammatory therapies remain enigmatic. Work in the last decade has shed new light on the heterogeneous nature of asthma, and the varied immunopathologies of severe disease, which are leading to new treatment approaches for the individual patient. However, most studies to date that explored the immune landscape of the inflamed lower airways have focused on adults. T cells are pivotal to the inception and persistence of inflammatory processes in the diseased lungs, despite a contemporary shift in focus to immune events at the epithelial barrier. This article outlines current knowledge on the types of T cells and related cell types that are implicated in severe asthma. The potential for environmental exposures and other inflammatory cues to condition the immune environment of the lung in early life to favour pathogenic T cells and steroid resistance is discussed. The contributions of T cells and their cytokines to inflammatory processes and treatment resistance are also considered, with an emphasis on new observations in children that argue against conventional type 1 and type 2 T cell paradigms. Finally, the ability for new technologies to revolutionize our understanding of T cells in severe childhood asthma, and to guide future treatment strategies that could mitigate this disease, is highlighted.
Assuntos
Asma/diagnóstico , Asma/etiologia , Linfócitos T/imunologia , Animais , Asma/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Modelos Biológicos , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismoRESUMO
BACKGROUND: The pathogenesis of severe asthma in childhood remains poorly understood. OBJECTIVE: We sought to construct the immunologic landscape in the airways of children with severe asthma. METHODS: Comprehensive analysis of multiple cell types and mediators was performed by using flow cytometry and a multiplex assay with bronchoalveolar lavage (BAL) specimens (n = 68) from 52 highly characterized allergic and nonallergic children (0.5-17 years) with severe treatment-refractory asthma. Multiple relationships were tested by using linear mixed-effects modeling. RESULTS: Memory CCR5+ TH1 cells were enriched in BAL fluid versus blood, and pathogenic respiratory viruses and bacteria were readily detected. IFN-γ+IL-17+ and IFN-γ-IL-17+ subsets constituted secondary TH types, and BAL fluid CD8+ T cells were almost exclusively IFN-γ+. The TH17-associated mediators IL-23 and macrophage inflammatory protein 3α/CCL20 were highly expressed. Despite low TH2 numbers, TH2 cytokines were detected, and TH2 skewing correlated with total IgE levels. Type 2 innate lymphoid cells and basophils were scarce in BAL fluid. Levels of IL-5, IL-33, and IL-28A/IFN-λ2 were increased in multisensitized children and correlated with IgE levels to dust mite, ryegrass, and fungi but not cat, ragweed, or food sources. Additionally, levels of IL-5, but no other cytokine, increased with age and correlated with eosinophil numbers in BAL fluid and blood. Both plasmacytoid and IgE+FcεRI+ myeloid dendritic cells were present in BAL fluid. CONCLUSIONS: The lower airways of children with severe asthma display a dominant TH1 signature and atypical cytokine profiles that link to allergic status. Our findings deviate from established paradigms and warrant further assessment of the pathogenicity of TH1 cells in patients with severe asthma.
Assuntos
Asma/imunologia , Células Th1/imunologia , Adolescente , Asma/complicações , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Hipersensibilidade/complicações , Hipersensibilidade/imunologia , Lactente , Pulmão/imunologia , MasculinoRESUMO
Background: Little is known about T cells that respond to human rhinovirus in vivo, due to timing of infection, viral diversity, and complex T-cell specificities. We tracked circulating CD4+ T cells with identical epitope specificities that responded to intranasal challenge with rhinovirus (RV)-A39, and we assessed T-cell signatures in the nose. Methods: Cells were monitored using a mixture of 2 capsid-specific major histocompatibility complex II tetramers over a 7-week period, before and after RV-A39 challenge, in 16 human leukocyte antigen-DR4+ subjects who participated in a trial of Bifidobacterium lactis (Bl-04) supplementation. Results: Pre-existing tetramer+ T cells were linked to delayed viral shedding, enriched for activated CCR5+ Th1 effectors, and included a minor interleukin-21+ T follicular helper cell subset. After RV challenge, expansion and activation of virus-specific CCR5+ Th1 effectors was restricted to subjects who had a rise in neutralizing antibodies, and tetramer-negative CCR5+ effector memory types were comodulated. In the nose, CXCR3-CCR5+ T cells present during acute infection were activated effector memory type, whereas CXCR3+ cells were central memory type, and cognate chemokine ligands were elevated over baseline. Probiotic had no T-cell effects. Conclusions: We conclude that virus-specific CCR5+ effector memory CD4+ T cells primed by previous exposure to related viruses contribute to the control of rhinovirus.
Assuntos
Infecções por Enterovirus/imunologia , Enterovirus/imunologia , Memória Imunológica , Células Th1/imunologia , Adolescente , Adulto , Sangue/imunologia , Rastreamento de Células , Infecções por Enterovirus/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/imunologia , Receptores CCR5/análise , Adulto JovemRESUMO
Rhinovirus (RV) is a major cause of common cold and an important trigger of acute episodes of chronic lung diseases. Antigenic variation across the numerous RV strains results in frequent infections and a lack of durable cross-protection. Because the nature of human CD4+ T cells that target RV is largely unknown, T cell epitopes of RV capsid proteins were analyzed, and cognate T cells were characterized in healthy subjects and those infected by intranasal challenge. Peptide epitopes of the RV-A16 capsid proteins VP1 and VP2 were identified by peptide/MHC class II tetramer-guided epitope mapping, validated by direct ex vivo enumeration, and interrogated using a variety of in silico methods. Among noninfected subjects, those circulating RV-A16-specific CD4+ T cells detected at the highest frequencies targeted 10 unique epitopes that bound to diverse HLA-DR molecules. T cell epitopes localized to conserved molecular regions of biological significance to the virus were enriched for HLA class I and II binding motifs, and constituted both species-specific (RV-A) and pan-species (RV-A, -B, and -C) varieties. Circulating epitope-specific T cells comprised both memory Th1 and T follicular helper cells, and were rapidly expanded and activated after intranasal challenge with RV-A16. Cross-reactivity was evidenced by identification of a common *0401-restricted epitope for RV-A16 and RV-A39 by tetramer-guided epitope mapping and the ability for RV-A16-specific Th1 cells to proliferate in response to their RV-A39 peptide counterpart. The preferential persistence of high-frequency RV-specific memory Th1 cells that recognize a limited set of conserved epitopes likely arises from iterative priming by previous exposures to different RV strains.
Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Proteínas do Capsídeo/imunologia , Epitopos de Linfócito T/imunologia , Memória Imunológica , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Adolescente , Adulto , Mapeamento de Epitopos , Humanos , Pessoa de Meia-Idade , Adulto JovemRESUMO
Asthma encompasses a variety of clinical phenotypes that involve distinct T cell-driven inflammatory processes. Improved understanding of human T-cell biology and the influence of innate cytokines on T-cell responses at the epithelial barrier has led to new asthma paradigms. This review captures recent knowledge on pathogenic CD4+ T cells in asthmatic patients by drawing on observations in mouse models and human disease. In patients with allergic asthma, TH2 cells promote IgE-mediated sensitization, airway hyperreactivity, and eosinophilia. Here we discuss recent discoveries in the myriad molecular pathways that govern the induction of TH2 differentiation and the critical role of GATA-3 in this process. We elaborate on how cross-talk between epithelial cells, dendritic cells, and innate lymphoid cells translates to T-cell outcomes, with an emphasis on the actions of thymic stromal lymphopoietin, IL-25, and IL-33 at the epithelial barrier. New concepts on how T-cell skewing and epitope specificity are shaped by multiple environmental cues integrated by dendritic cell "hubs" are discussed. We also describe advances in understanding the origins of atypical TH2 cells in asthmatic patients, the role of TH1 cells and other non-TH2 types in asthmatic patients, and the features of T-cell pathogenicity at the single-cell level. Progress in technologies that enable highly multiplexed profiling of markers within a single cell promise to overcome barriers to T-cell discovery in human asthmatic patients that could transform our understanding of disease. These developments, along with novel T cell-based therapies, position us to expand the assortment of molecular targets that could facilitate personalized treatments.
Assuntos
Asma/imunologia , Linfócitos T CD4-Positivos/imunologia , Sistema Respiratório/imunologia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Inflamação , Camundongos , Equilíbrio Th1-Th2RESUMO
Bla g 2 is a major indoor cockroach allergen associated with the development of asthma. Antigenic determinants on Bla g 2 were analyzed by mutagenesis based on the structure of the allergen alone and in complex with monoclonal antibodies that interfere with IgE antibody binding. The structural analysis revealed mechanisms of allergen-antibody recognition through cation-π interactions. Single and multiple Bla g 2 mutants were expressed in Pichia pastoris and purified. The triple mutant K132A/K251A/F162Y showed an â¼100-fold reduced capacity to bind IgE, while preserving the native molecular fold, as proven by x-ray crystallography. This mutant was still able to induce mast cell release. T-cell responses were assessed by analyzing Th1/Th2 cytokine production and the CD4(+) T-cell phenotype in peripheral blood mononuclear cell cultures. Although T-cell activating capacity was similar for the KKF mutant and Bla g 2 based on CD25 expression, the KKF mutant was a weaker inducer of the Th2 cytokine IL-13. Furthermore, this mutant induced IL-10 from a non-T-cell source at higher levels that those induced by Bla g 2. Our findings demonstrate that a rational design of site-directed mutagenesis was effective in producing a mutant with only 3 amino acid substitutions that maintained the same fold as wild type Bla g 2. These residues, which were involved in IgE antibody binding, endowed Bla g 2 with a T-cell modulatory capacity. The antigenic analysis of Bla g 2 will be useful for the subsequent development of recombinant allergen vaccines.
Assuntos
Alérgenos/química , Ácido Aspártico Endopeptidases/química , Baratas/química , Proteínas de Insetos/química , Alérgenos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Ácido Aspártico Endopeptidases/imunologia , Asma/etiologia , Linfócitos T CD4-Positivos/citologia , Cristalografia por Raios X , Epitopos de Linfócito T/química , Humanos , Imunoglobulina E/imunologia , Proteínas de Insetos/imunologia , Mutagênese , Mutação , Pichia , Ligação Proteica , Conformação Proteica , Células Th1/citologia , Células Th2/citologiaRESUMO
BACKGROUND: IgE to galactose-alpha-1,3-galactose (alpha-gal) is linked to tick bites and an important cause of anaphylaxis and urticarial reactions to mammalian meat. The alpha-gal syndrome (AGS) is recognized as being common in the southeastern United States. However, prevalence studies are lacking and open questions remain about risk factors and clinical presentation of alpha-gal sensitization. OBJECTIVE: Here we characterized the prevalence as well as the presentation and risk factors of AGS and alpha-gal IgE sensitization in adults in central Virginia recruited without regard to the history of allergic disease. METHODS: Adults in central Virginia, primarily University of Virginia Health employees, were recruited as part of a COVID-19 vaccine study. Subjects provided at least one blood sample and answered questionnaires about medical and dietary history. We used ImmunoCAP for IgE assays and assessed the ABO blood group by reverse typing using stored serum. We also investigated biobanked serum from COVID-19 patients. RESULTS: Median age of the 267 enrollees was 42 years, 76% were female, and 43 (16%) were sensitized to alpha-gal (cutoff of 0.1 IU/mL), of which mammalian meat allergy was reported by seven (2.6%). Sensitized subjects (1) were older, (2) had higher total IgE levels but a similar frequency of IgE to common respiratory allergens, and (3) were more likely to report tick bites than were nonsensitized subjects. Among those who were sensitized, alpha-gal IgE levels were higher among meat-allergic than nonallergic subjects (geometric mean, 9.0 vs 0.5 IU/mL; P < .001). Mammalian meat and dairy consumption was common in individuals with low-level sensitization. CONCLUSION: In central Virginia, AGS is a dominant cause of adult food allergy with a prevalence approaching or exceeding 2%.
Assuntos
COVID-19 , Hipersensibilidade Alimentar , Imunoglobulina E , Humanos , Imunoglobulina E/sangue , Feminino , Masculino , Adulto , Virginia/epidemiologia , Pessoa de Meia-Idade , Hipersensibilidade Alimentar/epidemiologia , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/diagnóstico , COVID-19/imunologia , COVID-19/epidemiologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2/imunologia , Estudos de Coortes , Picadas de Carrapatos/imunologia , Picadas de Carrapatos/epidemiologia , Prevalência , Fatores de Risco , Alérgenos/imunologia , Animais , Carne , Idoso , Dissacarídeos/imunologiaRESUMO
The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.
RESUMO
Introduction: Up to 30% of hospitalized COVID-19 patients experience persistent sequelae, including pulmonary fibrosis (PF). Methods: We examined COVID-19 survivors with impaired lung function and imaging worrisome for developing PF and found within six months, symptoms, restriction and PF improved in some (Early-Resolving COVID-PF), but persisted in others (Late-Resolving COVID-PF). To evaluate immune mechanisms associated with recovery versus persistent PF, we performed single-cell RNA-sequencing and multiplex immunostaining on peripheral blood mononuclear cells from patients with Early- and Late-Resolving COVID-PF and compared them to age-matched controls without respiratory disease. Results and discussion: Our analysis showed circulating monocytes were significantly reduced in Late-Resolving COVID-PF patients compared to Early-Resolving COVID-PF and non-diseased controls. Monocyte abundance correlated with pulmonary function forced vital capacity and diffusion capacity. Differential expression analysis revealed MHC-II class molecules were upregulated on the CD8 T cells of Late-Resolving COVID-PF patients but downregulated in monocytes. To determine whether these immune signatures resembled other interstitial lung diseases, we analyzed samples from Idiopathic Pulmonary Fibrosis (IPF) patients. IPF patients had a similar marked decrease in monocyte HLA-DR protein expression compared to Late-Resolving COVID-PF patients. Our findings indicate decreased circulating monocytes are associated with decreased lung function and uniquely distinguish Late-Resolving COVID-PF from Early-Resolving COVID-PF, IPF, and non-diseased controls.
Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Humanos , Monócitos , Leucócitos Mononucleares , PulmãoRESUMO
The long-term physiological consequences of SARS-CoV-2, termed Post-Acute Sequelae of COVID-19 (PASC), are rapidly evolving into a major public health concern. The underlying cellular and molecular etiology remain poorly defined but growing evidence links PASC to abnormal immune responses and/or poor organ recovery post-infection. Yet, the precise mechanisms driving non-resolving inflammation and impaired tissue repair in the context of PASC remain unclear. With insights from three independent clinical cohorts of PASC patients with abnormal lung function and/or viral infection-mediated pulmonary fibrosis, we established a clinically relevant mouse model of post-viral lung sequelae to investigate the pathophysiology of respiratory PASC. By employing a combination of spatial transcriptomics and imaging, we identified dysregulated proximal interactions between immune cells and epithelial progenitors unique to the fibroproliferation in respiratory PASC but not acute COVID-19 or idiopathic pulmonary fibrosis (IPF). Specifically, we found a central role for lung-resident CD8+ T cell-macrophage interactions in maintaining Krt8hi transitional and ectopic Krt5+ basal cell progenitors, thus impairing alveolar regeneration and driving fibrotic sequelae after acute viral pneumonia. Mechanistically, CD8+ T cell derived IFN-γ and TNF stimulated lung macrophages to chronically release IL-1ß, resulting in the abnormal accumulation of dysplastic epithelial progenitors and fibrosis. Notably, therapeutic neutralization of IFN-γ and TNF, or IL-1ß after the resolution of acute infection resulted in markedly improved alveolar regeneration and restoration of pulmonary function. Together, our findings implicate a dysregulated immune-epithelial progenitor niche in driving respiratory PASC. Moreover, in contrast to other approaches requiring early intervention, we highlight therapeutic strategies to rescue fibrotic disease in the aftermath of respiratory viral infections, addressing the current unmet need in the clinical management of PASC and post-viral disease.
RESUMO
The long-term physiological consequences of SARS-CoV-2, termed Post-Acute Sequelae of COVID-19 (PASC), are rapidly evolving into a major public health concern. The underlying cellular and molecular etiology remain poorly defined but growing evidence links PASC to abnormal immune responses and/or poor organ recovery post-infection. Yet, the precise mechanisms driving non-resolving inflammation and impaired tissue repair in the context of PASC remain unclear. With insights from three independent clinical cohorts of PASC patients with abnormal lung function and/or viral infection-mediated pulmonary fibrosis, we established a clinically relevant mouse model of post-viral lung sequelae to investigate the pathophysiology of respiratory PASC. By employing a combination of spatial transcriptomics and imaging, we identified dysregulated proximal interactions between immune cells and epithelial progenitors unique to the fibroproliferation in respiratory PASC but not acute COVID-19 or idiopathic pulmonary fibrosis (IPF). Specifically, we found a central role for lung-resident CD8+ T cell-macrophage interactions in maintaining Krt8hi transitional and ectopic Krt5+ basal cell progenitors, thus impairing alveolar regeneration and driving fibrotic sequelae after acute viral pneumonia. Mechanistically, CD8+ T cell derived IFN-γ and TNF stimulated lung macrophages to chronically release IL-1ß, resulting in the abnormal accumulation of dysplastic epithelial progenitors and fibrosis. Notably, therapeutic neutralization of IFN-γ and TNF, or IL-1ß after the resolution of acute infection resulted in markedly improved alveolar regeneration and restoration of pulmonary function. Together, our findings implicate a dysregulated immune-epithelial progenitor niche in driving respiratory PASC. Moreover, in contrast to other approaches requiring early intervention, we highlight therapeutic strategies to rescue fibrotic disease in the aftermath of respiratory viral infections, addressing the current unmet need in the clinical management of PASC and post-viral disease.
RESUMO
Three COVID-19 vaccines have received FDA-authorization and are in use in the United States, but there is limited head-to-head data on the durability of the immune response elicited by these vaccines. Using a quantitative assay we studied binding IgG antibodies elicited by BNT162b2, mRNA-1273 or Ad26.COV2.S in an employee cohort over a span out to 10 months. Age and sex were explored as response modifiers. Of 234 subjects in the vaccine cohort, 114 received BNT162b2, 114 received mRNA-1273 and six received Ad26.COV2.S. IgG levels measured between seven to 20 days after the second vaccination were similar in recipients of BNT162b2 and mRNA-127 and were ~50-fold higher than in recipients of Ad26.COV2.S. However, by day 21 and at later time points IgG levels elicited by BNT162b2 were lower than mRNA-1273. Accordingly, the IgG decay curve was steeper for BNT162b2 than mRNA-1273. Age was a significant modifier of IgG levels in recipients of BNT162b2, but not mRNA-1273. After six months, IgG levels elicited by BNT162b2, but not mRNA-1273, were lower than IgG levels in patients who had been hospitalized with COVID-19 six months earlier. Similar findings were observed when comparing vaccine-elicited antibodies with steady-state IgG targeting seasonal human coronaviruses. Differential IgG decay could contribute to differences observed in clinical protection over time between BNT162b2 and mRNA-1273.
Assuntos
Vacina BNT162 , COVID-19 , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , SARS-CoV-2 , Estados Unidos , VacinaçãoRESUMO
For an emerging disease like COVID-19, systems immunology tools may quickly identify and quantitatively characterize cells associated with disease progression or clinical response. With repeated sampling, immune monitoring creates a real-time portrait of the cells reacting to a novel virus before disease-specific knowledge and tools are established. However, single cell analysis tools can struggle to reveal rare cells that are under 0.1% of the population. Here, the machine learning workflow Tracking Responders EXpanding (T-REX) was created to identify changes in both rare and common cells across human immune monitoring settings. T-REX identified cells with highly similar phenotypes that localized to hotspots of significant change during rhinovirus and SARS-CoV-2 infections. Specialized MHCII tetramer reagents that mark rhinovirus-specific CD4+ cells were left out during analysis and then used to test whether T-REX identified biologically significant cells. T-REX identified rhinovirus-specific CD4+ T cells based on phenotypically homogeneous cells expanding by ≥95% following infection. T-REX successfully identified hotspots of virus-specific T cells by comparing infection (day 7) to either pre-infection (day 0) or post-infection (day 28) samples. Plotting the direction and degree of change for each individual donor provided a useful summary view and revealed patterns of immune system behavior across immune monitoring settings. For example, the magnitude and direction of change in some COVID-19 patients was comparable to blast crisis acute myeloid leukemia patients undergoing a complete response to chemotherapy. Other COVID-19 patients instead displayed an immune trajectory like that seen in rhinovirus infection or checkpoint inhibitor therapy for melanoma. The T-REX algorithm thus rapidly identifies and characterizes mechanistically significant cells and places emerging diseases into a systems immunology context for comparison to well-studied immune changes.