Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771318

RESUMO

Chronic kidney disease (CKD) adversely affects the heart. The underlying mechanism and the interplay between the kidney and the heart are still obscure. We examined the cardiac effect using the unilateral ureteral obstruction (UUO)-induced CKD pre-clinical model in mice. Echocardiography, histopathology of the heart, myocardial mRNA expression of ANP and BNP, the extent of fibrotic (TGF-ß, α-SMA, and collagen I) and epigenetic (histone deacetylases, namely HDAC3, HDAC4, and HDAC6) proteins, and myocardial inflammatory response were assessed. Six weeks of post-UUO surgery, we observed a compromised left-ventricular wall thickness and signs of cardiac hypertrophy, accumulation of fibrosis associated, and inflammatory proteins in the heart. In addition, we observed a perturbation of epigenetic proteins, especially HDAC3, HDAC4, and HDAC6, in the heart. Pharmacological inhibition of HDAC6 using ricolinostat (RIC) lessened cardiac damage and improved left-ventricular wall thickness. The RIC treatment substantially restored the serum cardiac injury markers, namely creatine kinase-MB and lactate dehydrogenase (LDH) activities, ANP and BNP mRNA expression, and heart histological changes. The extent of myocardial fibrotic proteins, phospho-NF-κB (p65), and pro-inflammatory cytokines (TNF-α, IL-18, and IL-1ß) were significantly decreased in the RIC treatment group. Further findings revealed the CKD-induced infiltration of CD3, CD8a, CD11c, and F4/80 positive inflammatory cells in the heart. Treatment with RIC substantially reduced the myocardial infiltration of these inflammatory cells. From these findings, we believe that CKD-induced myocardial HDAC6 perturbation has a deteriorative effect on the heart, and inhibition of HDAC6 can be a promising approach to alleviate CKD-induced myocardial remodeling.

2.
J Biochem Mol Toxicol ; 38(6): e23738, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764152

RESUMO

Ulcerative colitis (UC) is a chronic problem of the intestine and relapsing in nature. Biochanin A is a nature-derived isoflavonoid and has numerous bioactivities. However, its role against UC and intestinal inflammation remains obscure. We aimed to comprehensively explore the pharmacological effect of biochanin A in alleviating colitis and to evaluate the potential mechanisms. Initially, we explored the anti-inflammatory action of biochanin A (15, 30, and 60 µM) by employing lipopolysaccharide (LPS)-activated RAW 264.7 cells. In RAW 264.7 cells under LPS stimulation, biochanin A inhibited the elevation of reactive oxygen species (ROS) (p < 0.0001), interleukin (IL)-1ß (p < 0.0001), IL-18 (p < 0.01), and tumor necrosis factor (TNF)-α (p < 0.01) release, nitrite production (p < 0.0001), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. Next, we studied the effectiveness of biochanin A (20 and 40 mg/kg) in mouse colitis induced with dextran sulfate sodium (DSS) by assessing colon length, disease activity index (DAI) scoring, and performing colonoscopy and histological analysis. The pro-inflammatory cytokines were estimated using ELISA. Western blot studies were performed to assess underlying mechanisms. In mice, biochanin A treatment alleviated DAI score (p < 0.0001), restored colon length (p < 0.05) and morphology, and re-established colon histopathology. Biochanin A affects the phosphorylation of proteins associated with NF-κB (p65) and mitogen-activated protein kinase (MAPK) axis and regulates colonic inflammation by reducing the expression of inflammatory cytokines and myeloperoxidase (MPO) activity. Altogether, our findings support the idea that the anticolitis potential of biochanin A is allied with anti-inflammatory activity by inhibiting the MAPK/NF-κB (p65) axis. Hence, biochanin A may be an alternative option to alleviate the risk of colitis.


Assuntos
Colite Ulcerativa , Genisteína , Fator de Transcrição RelA , Animais , Genisteína/farmacologia , Camundongos , Células RAW 264.7 , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Fator de Transcrição RelA/metabolismo , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Sulfato de Dextrana/toxicidade
3.
Arch Biochem Biophys ; 745: 109701, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499993

RESUMO

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide. Cytochrome P450 2E1 (CYP2E1) is an enzyme, primarily involved in the metabolism of xenobiotics and procarcinogens. The present study was designed to investigate the potential role of CYP2E1 triggered endoplasmic reticulum stress in the progression of HCC through inhibition of apoptosis. In vitro CYP2E1 promotes HepG2 cell migration, reduced chromatin condensation, enhanced intracellular ROS accumulation and induce cell cycle progression. Conversely this effect was averted by CYP2E1 siRNA, selective inhibitor Diallyl sulphide (DAS) and antioxidants (vitamin C and E). In vivo Diethylnitrosamine (DEN) induced HCC rats showed decreased body weight and increased relative liver weight. Moreover, macro trabecular-massive HCC (MTM-HCC) histological subtyping showed pathological features like well-differentiated tumors, micro-trabecular and pseudo glandular patterns, megakaryocytes and cholestasis. Masson's trichrome staining revealed an intensive accumulation of collagen fibers in the extracellular matrix (ECM). Increased CYP2E1, VEGF and PCNA enhance the carcinogenicity as revealed in immunohistochemistry results. Immunoblot analysis showed reduced expression of copper-zinc superoxide dismutase (CuZnSOD) and manganese superoxide dismutase (MnSOD) in cytosolic as well as mitochondrial fraction of rat liver tissue respectively. Also, increased level of CYP2E1 stimulated the upregulation of unfolded proteins response (UPR) and ER stress-related proteins such as Glucose regulatory protein 78 (GRP78), activating transcription factor 6 (ATF6) and CCAAT enhancer-binding protein (C/EBP) homologous protein (CHOP). Meanwhile, CYP2E1 stimulated ER-stress reduces BCL2 and downregulates the cleaved caspase 3 thus suppresses apoptosis. in. Furthermore, immunofluorescence revealed increased expression level of α-SMA in the HCC rat liver tissue. The level of CYP2E1 mRNA was significantly increased. Altogether, these findings indicate that CYP2E1 has a dynamic role in the pathogenesis of HCC and might be a budding agent in liver carcinogenesis therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Ratos , Fator 6 Ativador da Transcrição , Apoptose , Carcinoma Hepatocelular/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Neoplasias Hepáticas/metabolismo , Fatores de Transcrição , Fator de Transcrição CHOP , Humanos
4.
Biomacromolecules ; 24(12): 5780-5796, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38006339

RESUMO

In the current study, we aimed to develop lyotropic crystalline nanoconstructs (LCNs) based on poly(l-glutamic acid) (PLG) with a two-tier strategy. The first objective was to confer pH-responsive charge conversion properties to facilitate the delivery of both doxorubicin (DOX) and buparvaquone (BPQ) in combination (B + D@LCNs) to harness their synergistic effects. The second goal was to achieve targeted delivery to sigma receptors within the tumor tissues. To achieve this, we designed a pH-responsive charge conversion system using a polymer consisting of poly(ethylenimine), poly(l-lysine), and poly(l-glutamic acid) (PLG), which was then covalently coupled with methoxybenzamide (MBA) for potential sigma receptor targeting. The resulting B + D@LCNs were further modified by surface functionalization with PLG-MBA to confer both sigma receptor targeting and pH-responsive charge conversion properties. Our observations indicated that at physiological pH 7.4, P/B + D-MBA@LCNs exhibited a negative charge, while under acidic conditions (pH 5.5, characteristic of the tumor microenvironment), they acquired a positive charge. The particle size of P/B + D-MBA@LCNs was determined to be 168.23 ± 2.66 nm at pH 7.4 and 201.23 ± 1.46 nm at pH 5.5. The crystalline structure of the LCNs was confirmed through small-angle X-ray scattering (SAXS) diffraction patterns. Receptor-mediated endocytosis, facilitated by P/B + D-MBA@LCNs, was confirmed using confocal laser scanning microscopy and flow cytometry. The P/B + D-MBA@LCNs formulation demonstrated a higher rate of G2/M phase arrest (55.20%) compared to free B + D (37.50%) and induced mitochondrial depolarization (59.39%) to a greater extent than P/B + D@LCNs (45.66%). Pharmacokinetic analysis revealed significantly improved area under the curve (AUC) values for both DOX and BPQ when administered as P/B + D-MBA@LCNs, along with enhanced tumor localization. Tumor regression studies exhibited a substantial reduction in tumor size, with P/B + D-MBA@LCNs leading to 3.2- and 1.27-fold reductions compared to B + D and nontargeted P/B + D@LCNs groups, respectively. In summary, this two-tier strategy demonstrates substantial promise for the delivery of a drug combination through the prototype formulation. It offers a potential chemotherapeutic option by minimizing toxic effects on healthy cells while maximizing therapeutic efficacy.


Assuntos
Neoplasias da Mama , Nanopartículas , Receptores sigma , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Ácido Glutâmico , Espalhamento a Baixo Ângulo , Difração de Raios X , Doxorrubicina/química , Concentração de Íons de Hidrogênio , Receptores sigma/uso terapêutico , Nanopartículas/química , Portadores de Fármacos/química , Microambiente Tumoral
5.
Pharmacol Res ; 182: 106292, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35691540

RESUMO

Diabetic retinopathy (DR) is a chronic microvascular complication of diabetes mellitus (DM). It is a worldwide growing epidemic disease considered to be the leading cause of vision-loss and blindness in people with DM. Redox reactions occurring at the extra- and intracellular levels are essential for the maintenance of cellular homeostasis. Dysregulation of redox homeostasis are implicated in the onset and development of DR. Thioredoxin1 (TRX1) and Thioredoxin2 (TRX2) are cytoplasmic and mitochondrially localized antioxidant proteins ubiquitously expressed in various cells and control cellular reactive oxygen species (ROS) by reducing the disulfides into thiol groups. Thioredoxin-interacting protein (TXNIP) binds to TRX system and inhibits the active reduced form of TRX through disulfide exchange reaction. Recent studies indicate the association of TRX/TXNIP with redox signal transduction pathways including activation of Nod-like receptor pyrin domain containing protein-3 (NLRP3) inflammasome, apoptosis, autophagy/mitophagy, epigenetic modifications in a redox-dependent manner. Thus, it is important to gain a more in-depth understanding about the cellular and molecular mechanisms that links redoxisome and ER/Mitochondrial dysfunction to drive the progression of DR. The purpose of this review is to provide a mechanistic understanding of the complex molecular mechanisms and pathophysiological roles associated with redoxisome, the TRX/TXNIP redox signaling complex under oxidative stress in the development of DR. Also, the molecular targets of FDA approved drugs and clinical trials in addition to effective antioxidant strategies for the treatment of diabetic retinopathy are reviewed.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Antioxidantes/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo
6.
Regul Toxicol Pharmacol ; 123: 104960, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34022260

RESUMO

Cassia occidentalis Linn (CO) is an annual/perennial plant having traditional uses in the treatments of ringworm, gastrointestinal ailments and piles, bone fracture, and wound healing. Previously, we confirmed the medicinal use of the stem extract (ethanolic) of CO (henceforth CSE) in fracture healing at 250 mg/kg dose in rats and described an osteogenic mode of action of four phytochemicals present in CSE. Here we studied CSE's preclinical safety and toxicity. CSE prepared as per regulations of Current Good Manufacturing Practice for human pharmaceuticals/phytopharmaceuticals and all studies were performed in rodents in a GLP-accredited facility. In acute dose toxicity as per New Drug and Clinical Trial Rules, 2019 (prior name schedule Y), in rats and mice and ten-day dose range-finding study in rats, CSE showed no mortality and no gross abnormality at 2500 mg/kg dose. Safety Pharmacology showed no adverse effect on central nervous system, cardiovascular system, and respiratory system at 2500 mg/kg dose. CSE was not mutagenic in the Ames test and did not cause clastogenicity assessed by in vivo bone marrow genotoxicity assay. By a sub chronic (90 days) repeated dose (as per OECD, 408 guideline) study in rats, the no-observed-adverse-effect-level was found to be 2500 mg/kg assessed by clinico-biochemistry and all organs histopathology. We conclude that CSE is safe up to 10X the dose required for its osteogenic effect.


Assuntos
Compostos Fitoquímicos/toxicidade , Extratos Vegetais/toxicidade , Senna , Animais , Etanol , Camundongos , Nível de Efeito Adverso não Observado , Ratos , Roedores , Testes de Toxicidade
7.
Cancer Invest ; 38(8-9): 476-485, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32845783

RESUMO

Cancer has emerged as a major public health issue in developed as well as in developing countries. Plant-derived molecules are widely being used in the treatment of cancer due to their minimum side effects. Lawsonia inermis (Henna) is one of the medicinal plants containing many therapeutic properties. In the present study, bioactive components of L. inermis extract were analyzed by LCMS/MS method and validated. Lawsone (3.5%) is primarily responsible for cytotoxic and anti-cancerous activities. These properties were studied on human lung carcinoma (A549), colorectal cancer (DLD1) and Hepatocellular carcinoma (HepG2) cancer cell lines. The activities were assessed by MTT assay, evaluation of apoptosis by measuring the production of Reactive Oxygen Species (ROS) and mitochondrial membrane potential of the cancer cell lines. Moreover, apoptosis in the respective cancer cell lines was also determined by chromatin condensation and DNA fragmentation using Hoechst 33528 and propidium iodide (PI) staining. The preliminary in vitro result of MTT showed that the henna extract induces cytotoxic properties against A549, DLD1, HepG2 with IC50values 490, 480 and 610 µg/ml respectively (more than 40% growth inhibition). In addition, the extract induced a concentration-dependent rise in ROS production which was 84, 102, and 110% in HepG2, DLD1 AND A549 respectively at 300 µg/ml, whereas at 400 µg/ml concentration it was 86, 102, and 106% in respective cell lines while decreasing mitochondrial membrane potential was more than 20% in the investigated cell lines. The extract also provoked changes associated with apoptosis and the data indicate that the ROS production leads to a diminution in mitochondrial membrane potential and this correlated with the extract cytotoxicity.


Assuntos
Lawsonia (Planta)/química , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Células A549 , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Cromatografia Líquida , Neoplasias Colorretais/tratamento farmacológico , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Naftoquinonas/análise , Naftoquinonas/farmacologia , Extratos Vegetais/análise , Espectrometria de Massas em Tandem
8.
Life Sci ; 353: 122934, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39089644

RESUMO

The review focused mainly on the pathogenesis of hepatogenous diabetes (HD) in liver cirrhosis (LC). This review reveals parallels between the mechanisms of metabolic dysfunction observed in LC and type II diabetes (T2DM), suggesting a shared pathway leading to HD. It underscores the role of insulin in HD pathogenesis, highlighting key factors such as insulin signaling, glucose metabolism, insulin resistance (IR), and the influence of adipocytes. Furthermore, the impact of adipose tissue accumulation, fatty acid metabolism, and pro-inflammatory cytokines like Tumor necrosis factor-α (TNF-α) on IR are discussed in the context of HD. Altered signaling pathways, disruptions in the endocrine system, liver inflammation, changes in muscle mass and composition, and modifications to the gut microbiota collectively contribute to the complex interplay linking cirrhosis and HD. This study highlights how important it is to identify and treat this complex condition in cirrhotic patients by thoroughly analyzing the link between cirrhosis, IR, and HD. It also emphasizes the vitality of targeted interventions. Cellular and molecular investigations into IR have revealed potential therapeutic targets for managing and preventing HD.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Cirrose Hepática , Humanos , Cirrose Hepática/metabolismo , Resistência à Insulina/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Animais , Transdução de Sinais , Insulina/metabolismo
9.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119676, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242330

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive accumulation of extracellular matrix, leading to irreversible fibrosis. Emerging evidence suggests that endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress pathways play crucial roles in the pathogenesis of IPF. ER stress occurs when the protein folding capacity of the ER is overwhelmed, triggering the unfolded protein response (UPR) and contributing to protein misfolding and cellular stress in IPF. Concurrently, mitochondrial dysfunction involving dysregulation of key regulators, including PTEN-induced putative kinase 1 (PINK1), Parkin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and sirtuin 3 (SIRT3), disrupts mitochondrial homeostasis and impairs cellular energy metabolism. This leads to increased reactive oxygen species (ROS) production, release of pro-fibrotic mediators, and activation of fibrotic pathways, exacerbating IPF progression. The UPR-induced ER stress further disrupts mitochondrial metabolism, resulting in altered mitochondrial mechanisms that increase the generation of ROS, resulting in further ER stress, creating a feedback loop that contributes to the progression of IPF. Oxidative stress also plays a pivotal role in IPF, as ROS-mediated activation of TGF-ß, NF-κB, and MAPK pathways promotes inflammation and fibrotic responses. This review mainly focuses on the links between ER stress, mitochondrial dysfunctions, and oxidative stress with different signaling pathways involved in IPF. Understanding these mechanisms and targeting key molecules within these pathways may offer promising avenues for intervention.


Assuntos
Fibrose Pulmonar Idiopática , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio , Mitocôndrias , Inflamação
10.
Eur J Pharmacol ; 963: 176250, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38092315

RESUMO

Diabetic nephropathy (DN) is a serious concern in patients with diabetes mellitus. Prolonged hyperglycemia induces oxidative damage, chronic inflammation, and build-up of extracellular matrix (ECM) components in the renal cells, leading to kidney structural and functional changes. Imperatorin (IMP) is a naturally occurring furanocoumarin derivative with proven antioxidative and anti-inflammatory properties. We investigated whether IMP could improve DN and employed high glucose (HG)-induced HK-2 cells and high-fat diet-fed streptozotocin (HFD/STZ)-generated DN experimental model in C57BL/6 mice. In vitro, IMP effectively reduced the HG-activated reactive oxygen species generation, disturbance in the mitochondrial membrane potential (MMP) and epithelial-to-mesenchymal transition (EMT)-related markers, and the transforming growth factor (TGF)-ß and collagen 1 expression in HK-2 cells. In vivo, we found an elevation of serum creatinine, kidney histology alterations, and collagen build-up in the kidneys of the DN control group. Also, we found an altered expression of EMT-related markers, upregulation of the TGF-ß/Smad2/3 axis, and elevated pro-inflammatory molecules, TNF-α, IL-1ß, IL-18 and phospho-NF-kB (p65) in the DN control group. IMP treatment did not significantly reduce the blood glucose level compared to the DN control group. However, IMP treatment effectively improved renal damage by ameliorating kidney histological changes and serum renal injury markers. IMP treatment restored renal antioxidants and exhibited anti-inflammatory effects in the kidneys. Moreover, the abnormal manifestation of EMT-related attributes and elevated levels of TGF-ß, phospho-Smad2/3, and collagen 1 were also normalized in the IMP treatment group. Our findings highlight that IMP may be a potential candidate for treating DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Nefrite , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Fibrose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Rim , Camundongos Endogâmicos C57BL , Nefrite/patologia , Fator de Crescimento Transformador beta/metabolismo , Proteína Smad2/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/efeitos dos fármacos , Proteína Smad3/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Furocumarinas/farmacologia , Furocumarinas/uso terapêutico
11.
Microbes Infect ; 26(4): 105333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570086

RESUMO

Cerebral malaria (CM) induced by Plasmodium falciparum is a devastating neurological complication that may lead the patient to coma and death. This study aimed to protect Plasmodium-infected C57BL6 mice from CM by targeting the angiotensin II type 1 (AT1) receptor, which is considered the common connecting link between hypertension and CM. In CM, AT-1 mediates blood-brain barrier (BBB) damage through the overexpression of ß-catenin. The AT-1-inhibiting drugs, such as irbesartan and losartan, were evaluated for the prevention of CM. The effectiveness of these drugs was determined by the down regulation of ß-catenin, TCF, LEF, ICAM-1, and VCAM-1 in the drug-treated groups. The expression levels of VE-cadherin and vinculin, essential for the maintenance of BBB integrity, were found to be restored in the drug-treated groups. The pro-inflammatory cytokine levels were decreased, and the anti-inflammatory cytokine levels increased with the treatment. As a major highlight, the mean survival time of treated mice was found to be increased even in the absence of treatment with an anti-malarial agent. The combination of irbesartan or losartan with the anti-malarial agent α/ß-arteether has contributed to an 80% cure rate, which is higher than the 60% cure rate observed with α/ß-arteether alone treatment.


Assuntos
Modelos Animais de Doenças , Irbesartana , Malária Cerebral , Camundongos Endogâmicos C57BL , Animais , Camundongos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/parasitologia , Barreira Hematoencefálica/efeitos dos fármacos , Citocinas/metabolismo , Irbesartana/farmacologia , Irbesartana/uso terapêutico , Losartan/farmacologia , Losartan/uso terapêutico , Malária Cerebral/tratamento farmacológico , Malária Cerebral/parasitologia , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensinas/metabolismo
12.
Eur J Pharmacol ; 982: 176940, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39182545

RESUMO

Rheumatoid arthritis is an inflammatory condition primarily affecting the joints. Nuciferine (NCF), a key bioactive aporphine alkaloid biosynthesized in lotus leaves, exhibits promising anti-inflammatory and antioxidant properties. In this study, we investigated whether NCF could alleviate inflammatory arthritis conditions in a complete Freund's adjuvant (CFA)-mediated arthritis model in rats. The arthritis model was established through intradermal injection of CFA (100 µL) in the sub-plantar region of the right hind paw. The arthritic animals were treated orally with NCF at 5 and 10 mg/kg and indomethacin (Indo) at 5 mg/kg body weight as reference control. NCF treatment remarkably alleviated inflammatory joint swelling and arthritic index. The radiological and histological analysis revealed evidence of the beneficial effects of NCF. NCF treatment decreased the content of pro-inflammatory cytokines (TNF-α and IL-1ß) and myeloperoxidase (MPO) activity and restored the anti-inflammatory cytokine (IL-10) in the paw joints. The serum levels of pro-inflammatory cytokines were also markedly reduced in the NCF (10 mg/kg) treatment group. Moreover, the arthritis-induced inflammatory mediators, including cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) and the toll-like receptor (TLR)-4, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) signaling proteins were substantially decreased in the NCF treatment groups. NCF treatment also restored the antioxidant defense enzymes and abrogated lipid peroxidation in the paw tissue. Our findings strongly suggest that NCF is a promising therapeutic molecule for rheumatoid arthritis, inspiring further research, and development in this area.

13.
Free Radic Biol Med ; 219: 184-194, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636716

RESUMO

Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Mitocôndrias , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Animais , Camundongos , Medula Óssea/metabolismo , Fluoruracila/farmacologia , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Regeneração , Transdução de Sinais
14.
J Ocul Pharmacol Ther ; 40(5): 309-324, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38603587

RESUMO

Purpose: Glaucoma is a complex degenerative optic neuropathy characterized by loss of retinal ganglion cells (RGCs) leading to irreversible vision loss and blindness. Solanum nigrum has been used for decades in traditional medicine system. However, no extensive studies were reported on its antiglaucoma properties. Therefore, this study was designed to investigate the neuroprotective effects of S. nigrum extract on RGC against glaucoma rat model. Methods: High performance liquid chromatography and liquid chromatography tandem mass spectrometry was used to analyze the phytochemical profile of aqueous extract of S. nigrum (AESN). In vitro, {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} (MTT) and H2DCFDA assays were used to determine cell viability and reactive oxygen species (ROS) production in Statens Seruminstitut Rabbit Cornea cells. In vivo, AESN was orally administered to carbomer-induced rats for 4 weeks. Intraocular pressure, antioxidant levels, and electrolytes were determined. Histopathological and immunohistochemical analysis was carried out to evaluate the neurodegeneration of RGC. Results: MTT assay showed AESN exhibited greater cell viability and minimal ROS production at 10 µg/mL. Slit lamp and funduscopy confirmed glaucomatous changes in carbomer-induced rats. Administration of AESN showed minimal peripheral corneal vascularization and restored histopathological alterations such as minimal loss of corneal epithelium and moderate narrowing of the iridocorneal angle. Immunohistochemistry analysis showed increased expression of positive BRN3A cells and decreased matrix metalloproteinase (MMP)-9 activation in retina and cornea, whereas western blot analysis revealed downregulation of extracellular matrix proteins (COL-1 and MMP-9) in AESN-treated rats compared with the diseased group rats. Conclusions: AESN protects RGC loss through remodeling of MMPs and, therefore, can be used for the development of novel neurotherapeutics for the treatment of glaucoma.


Assuntos
Sobrevivência Celular , Modelos Animais de Doenças , Matriz Extracelular , Glaucoma , Fármacos Neuroprotetores , Extratos Vegetais , Espécies Reativas de Oxigênio , Células Ganglionares da Retina , Solanum nigrum , Animais , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Glaucoma/metabolismo , Ratos , Solanum nigrum/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Masculino , Coelhos , Pressão Intraocular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Ratos Sprague-Dawley
15.
Eur J Pharmacol ; 978: 176800, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38950835

RESUMO

Adiponectin plays key roles in energy metabolism and ameliorates inflammation, oxidative stress, and mitochondrial dysfunction via its primary receptors, adiponectin receptors -1 and 2 (AdipoR1 and AdipoR2). Systemic depletion of adiponectin causes various metabolic disorders, including MASLD; however adiponectin supplementation is not yet achievable owing to its large size and oligomerization-associated complexities. Small-molecule AdipoR agonists, thus, may provide viable therapeutic options against metabolic disorders. Using a novel luciferase reporter-based assay here, we have identified Apigenin-6-C-glucoside (ACG), but not apigenin, as a specific agonist for the liver-rich AdipoR isoform, AdipoR2 (EC50: 384 pM) with >10000X preference over AdipoR1. Immunoblot analysis in HEK-293 overexpressing AdipoR2 or HepG2 and PLC/PRF/5 liver cell lines revealed rapid AMPK, p38 activation and induction of typical AdipoR targets PGC-1α and PPARα by ACG at a pharmacologically relevant concentration of 100 nM (reported cMax in mouse; 297 nM). ACG-mediated AdipoR2 activation culminated in a favorable modulation of key metabolic events, including decreased inflammation, oxidative stress, mitochondrial dysfunction, de novo lipogenesis, and increased fatty acid ß-oxidation as determined by immunoblotting, QRT-PCR and extracellular flux analysis. AdipoR2 depletion or AMPK/p38 inhibition dampened these effects. The in vitro results were recapitulated in two different murine models of MASLD, where ACG at 10 mg/kg body weight robustly reduced hepatic steatosis, fibrosis, proinflammatory macrophage numbers, and increased hepatic glycogen content. Together, using in vitro experiments and rodent models, we demonstrate a proof-of-concept for AdipoR2 as a therapeutic target for MASLD and provide novel chemicobiological insights for the generation of translation-worthy pharmacological agents.


Assuntos
Apigenina , Glucosídeos , Receptores de Adiponectina , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/metabolismo , Animais , Humanos , Camundongos , Apigenina/farmacologia , Apigenina/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Masculino , Células Hep G2 , Células HEK293 , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proteínas Quinases Ativadas por AMP/metabolismo
16.
Metabolism ; 152: 155771, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184165

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) continues to pose a significant health challenge and is often diagnosed at advanced stages. Metabolic reprogramming is a hallmark of many cancer types, including HCC and it involves alterations in various metabolic or nutrient-sensing pathways within liver cells to facilitate the rapid growth and progression of tumours. However, the role of STAT3-NFκB in metabolic reprogramming is still not clear. APPROACH AND RESULTS: Diethylnitrosamine (DEN) administered animals showed decreased body weight and elevated level of serum enzymes. Also, Transmission electron microscopy (TEM) analysis revealed ultrastructural alterations. Increased phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated nuclear factor kappa B (p-NFκß), dynamin related protein 1 (Drp-1) and alpha-fetoprotein (AFP) expression enhance the carcinogenicity as revealed in immunohistochemistry (IHC). The enzyme-linked immunosorbent assay (ELISA) concentration of IL-6 was found to be elevated in time dependent manner both in blood serum and liver tissue. Moreover, immunoblot analysis showed increased level of p-STAT3, p-NFκß and IL-6 stimulated the upregulation of mitophagy proteins such as Drp-1, Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Meanwhile, downregulation of Poly [ADP-ribose] polymerase 1 (PARP-1) and cleaved caspase 3 suppresses apoptosis and enhanced expression of AFP supports tumorigenesis. The mRNA level of STAT3 and Drp-1 was also found to be significantly increased. Furthermore, we performed high-field 800 MHz Nuclear Magnetic Resonance (NMR) based tissue and serum metabolomics analysis to identify metabolic signatures associated with the progression of liver cancer. The metabolomics findings revealed aberrant metabolic alterations in liver tissue and serum of 75th and 105th days of intervention groups in comparison to control, 15th and 45th days of intervention groups. Tissue metabolomics analysis revealed the accumulation of succinate in the liver tissue samples, whereas, serum metabolomics analysis revealed significantly decreased circulatory levels of ketone bodies (such as 3-hydroxybutyrate, acetate, acetone, etc.) and membrane metabolites suggesting activated ketolysis in advanced stages of liver cancer. CONCLUSION: STAT3-NFκß signaling axis has a significant role in mitochondrial dysfunction and metabolic alterations in the development of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Doenças Mitocondriais , Transdução de Sinais , Animais , alfa-Fetoproteínas/metabolismo , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Interleucina-6/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/metabolismo , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo
17.
Life Sci ; 325: 121751, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37169145

RESUMO

Hepatocellular carcinoma (HCC) is among the deadliest cancer in human malignancies. It is the most common and severe type of primary liver cancer. However, the molecular mechanisms underlying HCC pathogenesis remain poorly understood. Long non-coding RNAs (lncRNAs), a new kind of RNA and epigenetic factors, play a crucial role in tumorigenesis and the progression of HCC. LncRNAs are capable of promoting the autophagy, proliferation, and migration of tumor cells by targeting and modulating the expression of downstream genes in signaling pathways related to cancer; these transcripts modify the activity and expression of various tumor suppressors and oncogenes. LncRNAs could act as biomarkers for treatment approaches such as immunotherapy, chemotherapy, and surgery to effectively treat HCC patients. Improved knowledge regarding the aetiology of HCC may result from an advanced understanding of lncRNAs. Enhanced oxidative stress in the mitochondrial and Endoplasmic reticulum leads to the activation of unfolded protein response pathway that plays a crucial role in the pathophysiology of hepatocellular carcinoma. The mutual regulation between LncRNAs and Endoplasmic reticulum (ER) stress in cancer and simultaneous activation of the unfolded protein response (UPR) pathway determines the fate of tumor cells in HCC. Mitochondria-associated lncRNAs work as essential components of several gene regulatory networks; abnormal regulation of mitochondria-associated lncRNAs may lead to oncogenesis, which provides further insight into the understanding of tumorigenesis and therapeutic strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinogênese/genética , Transformação Celular Neoplásica
18.
Int Immunopharmacol ; 115: 109613, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577154

RESUMO

Nuciferine (NCF) is an aporphine alkaloid and a principal bioactive constituent in the lotus plant. Herewith, we investigated the potential anti-inflammatory effect and underlying mechanisms of NCF employing dextran sulfate sodium (DSS)-induced ulcerative colitis in mice, a predominant intestinal inflammatory disease, and mouse RAW 264.7 cells in vitro. Lipopolysaccharide (LPS) was used to generate an inflammatory response in the RAW 264.7 cells. The disease activity index (DAI), colon morphology, colonoscopy, and colon histopathology were performed to assess experimental colitis. The biochemical assays, enzyme-linked immunosorbent assay (ELISA), and immunoblot analysis were performed to understand the underlying mechanisms. In RAW 264.7 cells, NCF pretreatment significantly decreased the expression of inducible nitric oxide synthase (iNOS), the expression and release of pro-inflammatory cytokines including interleukin (IL)-1ß, IL-18, and tumor necrosis factor-α (TNF-α) and interfered with the activation of mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and NOD-like family pyrin domain containing 3 (NLRP3) signaling pathways. The oral treatment of NCF substantially alleviated the DSS-induced DAI, increased colon length, and restored colon morphology and histology. Compared to the DSS-induced mice, the proteins involved in the activation of MAPK/NF-κB/NLRP3 pathways and the cytokines were markedly decreased in the NCF-treated mice. Moreover, the tight junction architecture of the colon was well-maintained in NCF treatment groups by regulating the expression of claudin-1 and zonula occludens-1 (ZO-1) proteins. All these findings suggest that NCF can be a promising molecule to modulate ulcerative colitis.


Assuntos
Aporfinas , Colite Ulcerativa , Colite , Animais , Camundongos , NF-kappa B/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/patologia , Aporfinas/farmacologia , Aporfinas/uso terapêutico , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL
19.
Chem Biol Interact ; 373: 110373, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736873

RESUMO

Lung cancer is an aggressive malignancy and the leading cause of cancer-related deaths. Benzo[a]pyrene (B[a]P), a polycyclic hydrocarbon, plays a pivotal role in lung carcinogenesis. Uncovering the molecular mechanism underlying the pathophysiology of B[a]P induced malignancy is crucial. Male Sprague Dawley rats were induced with B[a]P to generate a lung cancer model. The B[a]P administered rats show increased body and lung weight, loss of normal pulmonary architecture, and decreased survival. This study demonstrated that B[a]P upregulates activating transcription factor-6 (ATF6) and C/EBP Homologous Protein (CHOP) and induces endoplasmic reticulum (ER) stress. B[a]P also dysregulated mitochondrial homeostasis by upregulating, PTEN-induced putative kinase-1 (PINK1) and Parkin. B[a]P affected the levels of superoxide dismutase (SOD), reduced glutathione (GSH), malondialdehyde (MDA), and increased oxidative stress. B[a]P exposure downregulated Kelch-like ECH-associated protein 1 (Keap1) and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme oxygenase-1(HO1). The metabolomic study identified that biosynthesis of nucleotide, amino acids, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA), and glutathione metabolism were up-accumulated. On the other hand, lower accumulation of fatty acids e.g., palmitic acid, stearic acid, and oleic acid were reported in the B[a]P induced group. Overall, the results of this study indicate that B[a]P treatment affects several signaling and metabolic pathways, whose dysregulation might be involved in lung cancer induction.


Assuntos
Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Animais , Masculino , Ratos , Benzo(a)pireno , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Metaboloma , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley
20.
Life Sci ; 324: 121743, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37120013

RESUMO

AIMS: Lipopolysaccharide (LPS) is a well-known agent to induce septic conditions. Sepsis-induced cardiomyopathy has an overwhelming death rate. Carvacrol (CVL), a monoterpene phenol, has anti-inflammatory and antioxidant properties. This research aimed to investigate the effect of CVL on LPS-induced dysfunction in the heart. In this study, we evaluated the effect of CVL in LPS-stimulated H9c2 cardiomyoblast cells and Balb/C mice. MAIN METHODS: LPS was used to induce septic conditions in H9c2 cardiomyoblast cells in vitro and in Balb/C mice. A survival study was conducted to assess the survival rate of mice after LPS and/or CVL treatment. KEY FINDINGS: In vitro studies indicated that CVL inhibits reactive oxygen species (ROS) generation and abates pyroptosis mediated by NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in H9c2 cells. In mice, CVL intervention improved the survival rate in septic conditions. The CVL administration markedly improved the echocardiographic parameters and alleviated the LPS-induced reduction in the ejection fraction (%) and fraction shortening (%). The CVL intervention restored the myocardial antioxidants and histopathological alterations and decreased the pro-inflammatory cytokine contents in the heart. Further findings disclosed that CVL reduced the protein levels of NLRP3, apoptosis-associated speck-like protein (ASC), caspase 1, interleukin (IL)-18, IL-1ß, and the pyroptosis-indicative protein, gasdermin-D (GSDMD) in the heart. The autophagy-indicative proteins, beclin 1 and p62 in the heart were also restored in the CVL-treated group. SIGNIFICANCE: Altogether, our findings demonstrated that CVL has a beneficial effect and can be a potential molecule against sepsis-induced myocardial dysfunction.


Assuntos
Cardiopatias , Sepse , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Lipopolissacarídeos/toxicidade , Gasderminas , Inflamassomos/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA