Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26252, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404813

RESUMO

This study proposed a novel application of Neural Network AutoRegressive eXogenous (NNARX) model in predicting nonlinear behaviour of riverbank erosion rates which is difficult to be achieved with good accuracy using conventional approaches. This model can estimate complex river bank erosion rates with flow variations. The NNARX model analysed to a set of primary data, 60% (203 data for training) and 40% (135 data for testing), which were collected from Sg. Bernam, Malaysia. A set of nondimensional parameters, known as functional relationship, used as an input to the NNARX model has been established using the method of repeating variables. The One-Step-Ahead time series prediction plots are used to assess the accuracy of all developed models. Model no. 6 (5 independent variables with 10 hidden layers) gives good predictive performance, supported by the graphical analysis with discrepancy ratio of 94% and 90% for training and testing datasets. This finding is consistent with model accuracy result, where Model no. 6 achieved R2 of 0.932 and 0.788 for training and testing datasets, respectively. Result shows that bank erosion is maximized when the near-bank velocity between 0.2 and 0.5 m/s, and the riverbank erosion is between 1.5 and 1.8 m/year. On the other hand, higher velocities ranging from 0.8 to 1.3 m/s induces erosion at a rate between 0.1 and 0.4 m/year. Sensitivity analysis shows that the highest accuracy of 91% is given by the ratio of shear velocity to near-bank velocity followed by boundary shear stress to near-bank velocity ratio (88.5%) and critical shear stress to near-bank velocity ratio (88.2%). It is concluded that the developed model has accurately predicted non-linear behaviour of riverbank erosion rates with flow variations. The study's findings provide valuable insights in advanced simulations and predictions of channel migration, encompassing both lateral and vertical movements, the repercussions on the adjacent river corridor, assessing the extent of land degradation and in formulating plans for effective riverbank protection and management measures.

2.
Environ Pollut ; 259: 113909, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31927277

RESUMO

Malaysia is a tropical country that is highly dependent on surface water for its raw water supply. Unfortunately, surface water is vulnerable to pollution, especially in developed and dense urban catchments. Therefore, in this study, a methodology was developed for an extensive temporal water quality index (WQI) and classification analysis, simulations of various pollutant discharge scenarios using QUAL2K software, and maps with NH3-N as the core pollutant using an integrated QUAL2K-GIS. It was found that most of the water quality stations are categorized as Class III (slightly polluted to polluted). These stations are surrounded by residential areas, industries, workshops, restaurants and wet markets that contribute to the poor water quality levels. Additionally, low WQI values were reported in 2010 owing to development and agricultural activities. However, the WQI values improved during the wet season. High concentrations of NH3-N were found in the basin, especially during dry weather conditions. Three scenarios were simulated, i.e. 10%, 50% and 70% of pollution discharge into Skudai river using a calibrated and validated QUAL2K model. Model performance was evaluated using the relative percentage difference. An inclusive graph showing the current conditions and pollution reduction scenarios with respect to the distance of Skudai river and its tributaries is developed to determine the WQI classification. Comprehensive water quality maps based on NH3-N as the core pollutant are developed using integrated QUAL2K-GIS to illustrate the overall condition of the Skudai river. High NH3-N in the Skudai River affects water treatment plant operations. Pollution control of more than 90% is required to improve the water quality classification to Class II. The methodology and analysis developed in this study can assist various stakeholders and authorities in identifying problematic areas and determining the required percentage of pollution reduction to improve the Skudai River water quality.


Assuntos
Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Poluentes Químicos da Água , Malásia , Rios , Poluição da Água , Qualidade da Água
3.
PLoS One ; 15(12): e0243293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332375

RESUMO

The main cause of problematic soil failure under a certain load is due to low bearing capacity and excessive settlement. With a growing interest in employing shallow foundation to support heavy structures, it is important to study the soil improvement techniques. The technique of using geosynthetic reinforcement is commonly applied over the last few decades. This paper aims to determine the effect of using geogrid Tensar BX1500 on the bearing capacity and settlement of strip footing for different types of soils, namely Al-Hamedat, Ba'shiqah, and Al-Rashidia in Mosul, Iraq. The analysis of reinforced and unreinforced soil foundations was conducted numerically and analytically. A series of conditions were tested by varying the number (N) and the width (b) of the geogrid layers. The results showed that the geogrid could improve the footing's bearing capacity and reduce settlement. The soil of the Al-Rashidia site was sandy and indicated better improvement than the other two sites' soils (clayey soils). The optimum geogrid width (b) was five times the footing width (B), while no optimum geogrid number (N) was obtained. Finally, the numerical results of the ultimate bearing capacity were compared with the analytical results, and the comparison showed good agreement between both the analyses and the optimum range published in the literature. The significant findings reveal that the geogrid reinforcement may induce improvement to the soil foundation, however, not directly subject to the width and number of the geogrid alone. The varying soil properties and footing size also contribute to both BCR and SRR values supported by the improvement factor calculations. Hence, the output complemented the benefit of applying reinforced soil foundations effectively.


Assuntos
Materiais de Construção , Solo , Argila/química , Materiais de Construção/análise , Fenômenos Geológicos , Iraque , Areia/química , Solo/química
4.
Environ Pollut ; 248: 133-144, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784832

RESUMO

Malaysia depends heavily on rivers as a source for water supply, irrigation, and sustaining the livelihood of local communities. The evolution of land use in urban areas due to rapid development and the continuous problem of illegal discharge have had a serious adverse impact on the health of the country's waterways. Klang River requires extensive rehabilitation and remediation before its water could be utilised for a variety of purposes. A reliable and rigorous remediation work plan is needed to identify the sources and locations of streams that are constantly polluted. This study attempts to investigate the feasibility of utilising a temporal and spatial risk quotient (RQ) based analysis to make an accurate assessment of the current condition of the tributaries in the Klang River catchment area. The study relies on existing data sets on Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and Ammonia (NH3) to evaluate the water quality at thirty strategic locations. Analysis of ammonia pollution is not only based on the limit established for river health but was expanded to include the feasibility of using the water for water intake, recreational activities, and sustaining fish population. The temporal health of Klang River was evaluated using the Risk Matrix Approach (RMA) based on the frequency of RQ > 1 and associated colour-coded hazard impacts. By using the developed RMA, the hazard level for each parameter at each location was assessed and individually mapped using Geographic Information System (GIS). The developed risk hazard mapping has high potential as one of the essential tools in making decisions for a cost-effective river restoration and rehabilitation.


Assuntos
Conservação dos Recursos Hídricos/métodos , Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Recursos Hídricos/provisão & distribuição , Animais , Análise da Demanda Biológica de Oxigênio , Peixes/crescimento & desenvolvimento , Malásia , Medição de Risco , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA